Anitha Ethirajan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3479542/publications.pdf

Version: 2024-02-01

		279487	182168
53	4,760 citations	23	51
papers	citations	h-index	g-index
55	55	55	7983
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Balancing fluorescence and singlet oxygen formation in push–pull type near-infrared BODIPY photosensitizers. Journal of Materials Chemistry C, 2022, 10, 9344-9355.	2.7	11
2	PEGylating poly(p-phenylene vinylene)-based bioimaging nanoprobes. Journal of Colloid and Interface Science, 2021, 581, 566-575.	5.0	4
3	Formation of giant polymer vesicles by simple double emulsification using block copolymers as the sole surfactant. Soft Matter, 2021, 17, 4942-4948.	1.2	13
4	Redox-Responsive Nanocapsules for the Spatiotemporal Release of Miltefosine in Lysosome: Protection against <i>Leishmania </i> . Bioconjugate Chemistry, 2021, 32, 245-253.	1.8	10
5	Extrusion and Injection Molding of Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate) (PHBHHx): Influence of Processing Conditions on Mechanical Properties and Microstructure. Polymers, 2021, 13, 4012.	2.0	11
6	Nearâ€Infrared BODIPYâ€Acridine Dyads Acting as Heavyâ€Atomâ€Free Dualâ€Functioning Photosensitizers. Chemistry - A European Journal, 2020, 26, 15212-15225.	1.7	14
7	Nanocapsules with stimuli-responsive moieties for controlled release employing light and enzymatic triggers. Materials Chemistry Frontiers, 2020, 4, 2103-2112.	3.2	20
8	Fluorescent PCDTBT Nanoparticles with Tunable Size for Versatile Bioimaging. Materials, 2019, 12, 2497.	1.3	6
9	Stimuli-Responsive Nanocapsules for the Spatiotemporal Release of Melatonin: Protection against Gastric Inflammation. ACS Applied Bio Materials, 2019, 2, 5218-5226.	2.3	18
10	Effect of Branching on the Optical Properties of Poly(p-phenylene ethynylene) Conjugated Polymer Nanoparticles for Bioimaging. ACS Biomaterials Science and Engineering, 2019, 5, 1967-1977.	2.6	17
11	Dynamics of the phospholipid shell of microbubbles: a fluorescence photoselection and spectral phasor approach. Chemical Communications, 2018, 54, 4854-4857.	2.2	13
12	Investigating the effect of poly-l-lactic acid nanoparticles carrying hypericin on the flow-biased diffusive motion of HeLa cell organelles. Journal of Pharmacy and Pharmacology, 2018, 71, 104-116.	1.2	14
13	Morphology-dependent pH-responsive release of hydrophilic payloads using biodegradable nanocarriers. RSC Advances, 2018, 8, 36869-36878.	1.7	16
14	Size-dependent properties of functional PPV-based conjugated polymer nanoparticles for bioimaging. Colloids and Surfaces B: Biointerfaces, 2018, 169, 494-501.	2.5	14
15	How Low Can You Go? Low Densities of Poly(ethylene glycol) Surfactants Attract Stealth Proteins. Macromolecular Bioscience, 2018, 18, e1800075.	2.1	8
16	Micro-patterned molecularly imprinted polymer structures on functionalized diamond-coated substrates for testosterone detection. Biosensors and Bioelectronics, 2018, 118, 58-65.	5. 3	32
17	Physicochemical characterizations of functional hybrid liposomal nanocarriers formed using photo-sensitive lipids. Scientific Reports, 2017, 7, 46257.	1.6	15
18	Tuning the optical properties of poly(p-phenylene ethynylene) nanoparticles as bio-imaging probes by side chain functionalization. Journal of Colloid and Interface Science, 2017, 504, 527-537.	5.0	17

#	Article	IF	Citations
19	Eco-friendly fabrication of PBDTTPD:PC71BM solar cells reaching a PCE of 3.8% using water-based nanoparticle dispersions. Organic Electronics, 2017, 42, 42-46.	1.4	47
20	Tuning of PCDTBT:PC71BM blend nanoparticles for eco-friendly processing of polymer solar cells. Solar Energy Materials and Solar Cells, 2017, 159, 179-188.	3.0	35
21	Conjugated Polymer Nanoparticles for Bioimaging. Materials, 2017, 10, 1420.	1.3	71
22	Investigating the Intracellular Dynamics of Hypericin-Loaded Nanoparticles and Polyvinylpyrrolidone-Hypericin by Image Correlation Spectroscopy., 2016,, 275-286.		1
23	Layer formation and morphology of ultrasonic spray coated polystyrene nanoparticle layers. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1441-1446.	0.8	12
24	Ionic strength dependent vesicle adsorption and phase behavior of anionic phospholipids on a gold substrate. Biointerphases, 2016, 11, 019006.	0.6	24
25	Assessing the toxicity of Pb- and Sn-based perovskite solar cells in model organism Danio rerio. Scientific Reports, 2016, 6, 18721.	1.6	396
26	PPV-Based Conjugated Polymer Nanoparticles as a Versatile Bioimaging Probe: A Closer Look at the Inherent Optical Properties and Nanoparticle–Cell Interactions. Biomacromolecules, 2016, 17, 2562-2571.	2.6	47
27	Improved Molecular Imprinting Based on Colloidal Particles Made from Miniemulsion: A Case Study on Testosterone and Its Structural Analogues. Macromolecules, 2016, 49, 2559-2567.	2.2	23
28	Toxicity of organometal halide perovskite solar cells. Nature Materials, 2016, 15, 247-251.	13.3	1,029
29	Eco-friendly spray coating of organic solar cells through water-based nanoparticles ink (Presentation Recording). , 2015, , .		0
30	Ligand switch in photoinduced copper-mediated polymerization: synthesis of methacrylate–acrylate block copolymers. Polymer Chemistry, 2015, 6, 6488-6497.	1.9	44
31	Intracellular localization and dynamics of Hypericin loaded PLLA nanocarriers by image correlation spectroscopy. Journal of Controlled Release, 2015, 218, 82-93.	4.8	19
32	Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite. Advanced Energy Materials, 2015, 5, 1500477.	10.2	1,788
33	Interfacial thiol–isocyanate reactions for functional nanocarriers: a facile route towards tunable morphologies and hydrophilic payload encapsulation. Chemical Communications, 2015, 51, 15858-15861.	2.2	39
34	Synthesis of PPV-b-PEG block copolymers via CuAAC conjugation. European Polymer Journal, 2014, 55, 114-122.	2.6	6
35	Synthesis of degradable poly(methyl methacrylate) star polymers via RAFT copolymerization with cyclic ketene acetals. Journal of Polymer Science Part A, 2014, 52, 1633-1641.	2.5	23
36	Photoinduced Sequence-Controlled Copper-Mediated Polymerization: Synthesis of Decablock Copolymers. ACS Macro Letters, 2014, 3, 732-737.	2.3	102

#	Article	IF	CITATIONS
37	Molecularly imprinted polymers as synthetic receptors for the QCM-D-based detection of l-nicotine in diluted saliva and urine samples. Analytical and Bioanalytical Chemistry, 2013, 405, 6479-6487.	1.9	33
38	Selective Identification of Macrophages and Cancer Cells Based on Thermal Transport through Surface-Imprinted Polymer Layers. ACS Applied Materials & Surfaces, 2013, 5, 7258-7267.	4.0	69
39	Ultrafast Selfâ€Assembly Using Ultrasound: A Facile Route to the Rapid Fabrication of Wellâ€Ordered Dense Arrays of Inorganic Nanostructures. Angewandte Chemie - International Edition, 2013, 52, 9709-9713.	7.2	7
40	UV-induced functionalization of poly(divinylbenzene) nanoparticles <i>via</i> efficient [2 + 2]-photocycloadditions. Polymer Chemistry, 2013, 4, 4010-4016.	1.9	15
41	Synthesis of MDMOâ€PPV Nanoparticles Via In Situ Sulfinyl Precursor Route Polymerization in Miniemulsion. Macromolecular Chemistry and Physics, 2013, 214, 1859-1864.	1.1	4
42	MIP-based biomimetic sensor for the electronic detection of serotonin in human blood plasma. Sensors and Actuators B: Chemical, 2012, 171-172, 602-610.	4.0	58
43	Detection of <scp>L</scp> â€nicotine with dissipation mode quartz crystal microbalance using molecular imprinted polymers. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 905-910.	0.8	9
44	Realâ€time study of protein adsorption on thin nanocrystalline diamond. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 2093-2098.	0.8	15
45	Biodegradable Polymeric Nanoparticles as Templates for Biomimetic Mineralization of Calcium Phosphate. Macromolecular Chemistry and Physics, 2011, 212, 915-925.	1.1	13
46	Biomimetic Route to Calcium Phosphate Coated Polymeric Nanoparticles: Influence of Different Functional Groups and pH. Macromolecular Chemistry and Physics, 2011, 212, 1165-1175.	1.1	25
47	Functional Hybrid Materials with Polymer Nanoparticles as Templates. Chemistry - A European Journal, 2010, 16, 9398-9412.	1.7	40
48	Nanostructured Coatings by Adhesion of Phosphonated Polystyrene Particles onto Titanium Surface for Implant Material Applications. ACS Applied Materials & Interfaces, 2010, 2, 2421-2428.	4.0	40
49	Surface-Functionalized Polymeric Nanoparticles as Templates for Biomimetic Mineralization of Hydroxyapatite. Chemistry of Materials, 2009, 21, 2218-2225.	3.2	73
50	Biomimetic Hydroxyapatite Crystallization in Gelatin Nanoparticles Synthesized Using a Miniemulsion Process. Advanced Functional Materials, 2008, 18, 2221-2227.	7.8	76
51	Synthesis and Optimization of Gelatin Nanoparticles Using the Miniemulsion Process. Biomacromolecules, 2008, 9, 2383-2389.	2.6	93
52	A Micellar Approach to Magnetic Ultrahigh-Density Data-Storage Media: Extending the Limits of Current Colloidal Methods. Advanced Materials, 2007, 19, 406-410.	11.1	103
53	Alloy Formation of Supported Gold Nanoparticles at Their Transition from Clusters to Solids: Does Size Matter?. Physical Review Letters, 2005, 94, 016804.	2.9	128