

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3479432/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Space-Confined Growth of MoS ₂ Nanosheets within Graphite: The Layered Hybrid of MoS ₂ and Graphene as an Active Catalyst for Hydrogen Evolution Reaction. Chemistry of Materials, 2014, 26, 2344-2353.	3.2	634
2	Co ₂ P–CoN Double Active Centers Confined in Nâ€Doped Carbon Nanotube: Heterostructural Engineering for Trifunctional Catalysis toward HER, ORR, OER, and Zn–Air Batteries Driven Water Splitting. Advanced Functional Materials, 2018, 28, 1805641.	7.8	443
3	Carbon Nanosheets Containing Discrete Co-N _{<i>x</i>} -B _{<i>y</i>} -C Active Sites for Efficient Oxygen Electrocatalysis and Rechargeable Zn–Air Batteries. ACS Nano, 2018, 12, 1894-1901.	7.3	419
4	Fabrication of 3D Hierarchical MoS ₂ /Polyaniline and MoS ₂ /C Architectures for Lithium-Ion Battery Applications. ACS Applied Materials & Interfaces, 2014, 6, 14644-14652.	4.0	369
5	Solvent Engineering Boosts the Efficiency of Paintable Carbonâ€Based Perovskite Solar Cells to Beyond 14%. Advanced Energy Materials, 2016, 6, 1502087.	10.2	306
6	Sulfuration of an Fe–N–C Catalyst Containing Fe <i>_x</i> C/Fe Species to Enhance the Catalysis of Oxygen Reduction in Acidic Media and for Use in Flexible Zn–Air Batteries. Advanced Materials, 2018, 30, e1804504.	11.1	269
7	Selective adsorption and separation of organic dyes from aqueous solution on polydopamine microspheres. Journal of Colloid and Interface Science, 2016, 461, 292-304.	5.0	265
8	High-Performance Flexible All-Solid-State Supercapacitor from Large Free-Standing Graphene-PEDOT/PSS Films. Scientific Reports, 2015, 5, 17045.	1.6	243
9	CO ₂ -Induced Phase Engineering: Protocol for Enhanced Photoelectrocatalytic Performance of 2D MoS ₂ Nanosheets. ACS Nano, 2016, 10, 2903-2909.	7.3	243
10	2D MOF Nanoflake-Assembled Spherical Microstructures for Enhanced Supercapacitor and Electrocatalysis Performances. Nano-Micro Letters, 2017, 9, 43.	14.4	234
11	Highâ€Performance Grapheneâ€Based Hole Conductorâ€Free Perovskite Solar Cells: Schottky Junction Enhanced Hole Extraction and Electron Blocking. Small, 2015, 11, 2269-2274.	5.2	233
12	Hysteresis-free multi-walled carbon nanotube-based perovskite solar cells with a high fill factor. Journal of Materials Chemistry A, 2015, 3, 24226-24231.	5.2	217
13	Boosting defective carbon by anchoring well-defined atomically dispersed metal-N4 sites for ORR, OER, and Zn-air batteries. Applied Catalysis B: Environmental, 2020, 260, 118198.	10.8	216
14	Activation of MoS ₂ Basal Planes for Hydrogen Evolution by Zinc. Angewandte Chemie - International Edition, 2019, 58, 2029-2033.	7.2	208
15	Beyond Yolk–Shell Nanoparticles: Fe ₃ O ₄ @Fe ₃ C Core@Shell Nanoparticles as Yolks and Carbon Nanospindles as Shells for Efficient Lithium Ion Storage. ACS Nano, 2015, 9, 3369-3376.	7.3	207
16	A scalable electrodeposition route to the low-cost, versatile and controllable fabrication of perovskite solar cells. Nano Energy, 2015, 15, 216-226.	8.2	207
17	Co intake mediated formation of ultrathin nanosheets of transition metal LDH—an advanced electrocatalyst for oxygen evolution reaction. Chemical Communications, 2015, 51, 1120-1123.	2.2	195
18	Boron Doping of Multiwalled Carbon Nanotubes Significantly Enhances Hole Extraction in Carbon-Based Perovskite Solar Cells. Nano Letters, 2017, 17, 2496-2505.	4.5	184

#	Article	IF	CITATIONS
19	Iron-doping-enhanced photoelectrochemical water splitting performance of nanostructured WO ₃ : a combined experimental and theoretical study. Nanoscale, 2015, 7, 2933-2940.	2.8	171
20	One-pot synthesis of porous 1T-phase MoS2 integrated with single-atom Cu doping for enhancing electrocatalytic hydrogen evolution reaction. Applied Catalysis B: Environmental, 2019, 251, 87-93.	10.8	160
21	Cobalt-Embedded Nitrogen Doped Carbon Nanotubes: A Bifunctional Catalyst for Oxygen Electrode Reactions in a Wide pH Range. ACS Applied Materials & Interfaces, 2015, 7, 4048-4055.	4.0	156
22	CO ₂ â€Assisted Fabrication of Twoâ€Dimensional Amorphous Molybdenum Oxide Nanosheets for Enhanced Plasmon Resonances. Angewandte Chemie - International Edition, 2017, 56, 1600-1604.	7.2	154
23	Adsorption of methylene blue onto poly(cyclotriphosphazene-co-4,4′-sulfonyldiphenol) nanotubes: Kinetics, isotherm and thermodynamics analysis. Journal of Hazardous Materials, 2014, 273, 263-271.	6.5	148
24	Development of Graphene Oxide/Polyaniline Inks for High Performance Flexible Microsupercapacitors via Extrusion Printing. Advanced Functional Materials, 2018, 28, 1706592.	7.8	144
25	Facilely constructing 3D porous NiCo ₂ S ₄ nanonetworks for high-performance supercapacitors. New Journal of Chemistry, 2014, 38, 4045.	1.4	140
26	Preparation of Graphene Oxide/Polyaniline Nanocomposite with Assistance of Supercritical Carbon Dioxide for Supercapacitor Electrodes. Industrial & Engineering Chemistry Research, 2012, 51, 14390-14398.	1.8	133
27	Mesoporous TiO ₂ Single Crystals: Facile Shape-, Size-, and Phase-Controlled Growth and Efficient Photocatalytic Performance. ACS Applied Materials & Interfaces, 2013, 5, 11249-11257.	4.0	116
28	Tough, adhesive and self-healing conductive 3D network hydrogel of physically linked functionalized-boron nitride/clay /poly(<i>N</i> -isopropylacrylamide). Journal of Materials Chemistry A, 2018, 6, 3091-3099.	5.2	110
29	Fabrication of Twoâ€Dimensional Lateral Heterostructures of WS ₂ /WO ₃ â‹H ₂ 0 Through Selective Oxidation of Monolayer WS ₂ . Angewandte Chemie - International Edition, 2015, 54, 15226-15230.	7.2	109
30	Unveiling a Key Intermediate in Solvent Vapor Postannealing to Enlarge Crystalline Domains of Organometal Halide Perovskite Films. Advanced Functional Materials, 2017, 27, 1604944.	7.8	107
31	A super-stretchable and tough functionalized boron nitride/PEDOT:PSS/poly(<i>N</i> -isopropylacrylamide) hydrogel with self-healing, adhesion, conductive and photothermal activity. Journal of Materials Chemistry A, 2019, 7, 8204-8209.	5.2	101
32	Nitrogen-Doped Hierarchical Porous Carbon Nanowhisker Ensembles on Carbon Nanofiber for High-Performance Supercapacitors. ACS Sustainable Chemistry and Engineering, 2014, 2, 1525-1533.	3.2	99
33	N,P-coordinated fullerene-like carbon nanostructures with dual active centers toward highly-efficient multi-functional electrocatalysis for CO ₂ RR, ORR and Zn-air battery. Journal of Materials Chemistry A, 2019, 7, 15271-15277.	5.2	99
34	N-doped carbon spheres with hierarchical micropore-nanosheet networks for high performance supercapacitors. Chemical Communications, 2014, 50, 12091-12094.	2.2	90
35	Designing nanobowl arrays of mesoporous TiO ₂ as an alternative electron transporting layer for carbon cathode-based perovskite solar cells. Nanoscale, 2016, 8, 6393-6402.	2.8	89
36	Nanohybrid Shish-Kebabs: Supercritical CO ₂ -Induced PE Epitaxy on Carbon Nanotubes. Macromolecules, 2008, 41, 2868-2873.	2.2	88

#	Article	IF	CITATIONS
37	Highly-efficient and selective adsorption of anionic dyes onto hollow polymer microcapsules having a high surface-density of amino groups: Isotherms, kinetics, thermodynamics and mechanism. Journal of Colloid and Interface Science, 2019, 542, 123-135.	5.0	88
38	Atomic-scaled cobalt encapsulated in P,N-doped carbon sheaths over carbon nanotubes for enhanced oxygen reduction electrocatalysis under acidic and alkaline media. Chemical Communications, 2017, 53, 9862-9865.	2.2	87
39	Modification of Carbon Nanotubes: Water-Soluble Polymers Nanocrystal Wrapping to Periodic Patterning with Assistance of Supercritical CO ₂ . Macromolecules, 2008, 41, 4519-4523.	2.2	85
40	Facile synthesis of Au nanoparticles supported on polyphosphazene functionalized carbon nanotubes for catalytic reduction of 4-nitrophenol. Journal of Materials Science, 2014, 49, 5056-5065.	1.7	85
41	Cobalt-Carbon Core-Shell Nanoparticles Aligned on Wrinkle of N-Doped Carbon Nanosheets with Pt-Like Activity for Oxygen Reduction. Small, 2016, 12, 2839-2845.	5.2	83
42	Mesoporous SnO ₂ single crystals as an effective electron collector for perovskite solar cells. Physical Chemistry Chemical Physics, 2015, 17, 18265-18268.	1.3	82
43	Ultrasound-spray deposition of multi-walled carbon nanotubes on NiO nanoparticles-embedded perovskite layers for high-performance carbon-based perovskite solar cells. Nano Energy, 2017, 42, 322-333.	8.2	82
44	CoS ₂ nanodots trapped within graphitic structured N-doped carbon spheres with efficient performances for lithium storage. Journal of Materials Chemistry A, 2018, 6, 7148-7154.	5.2	82
45	Solvent-Exfoliated and Functionalized Graphene with Assistance of Supercritical Carbon Dioxide. ACS Sustainable Chemistry and Engineering, 2013, 1, 144-151.	3.2	80
46	Polydopamine-coated magnetic nanochains as efficient dye adsorbent with good recyclability and magnetic separability. Journal of Colloid and Interface Science, 2018, 516, 263-273.	5.0	80
47	Reverse-Micelle-Induced Exfoliation of Graphite into Graphene Nanosheets with Assistance of Supercritical CO ₂ . Chemistry of Materials, 2015, 27, 3262-3272.	3.2	78
48	A multifunctional C + epoxy/Ag-paint cathode enables efficient and stable operation of perovskite solar cells in watery environments. Journal of Materials Chemistry A, 2015, 3, 16430-16434.	5.2	77
49	Co(II) _{1–<i>x</i>} Co(0) _{<i>x</i>/3} Mn(III) _{2<i>x</i>/3} S Nanoparticles Supported on B/N-Codoped Mesoporous Nanocarbon as a Bifunctional Electrocatalyst of Oxygen Reduction/Evolution for High-Performance Zinc-Air Batteries. ACS Applied Materials & amp; Interfaces, 2016. 8, 13348-13359.	4.0	77
50	An amorphous precursor route to the conformable oriented crystallization of CH ₃ NH ₃ PbBr ₃ in mesoporous scaffolds: toward efficient and thermally stable carbon-based perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 12897-12912.	5.2	77
51	Design and synthesis of novel sandwich-type C@TiO ₂ @C hollow microspheres as efficient sulfur hosts for advanced lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 1630-1638.	5.2	76
52	2D Thin Nanoflakes Assembled on Mesoporous Carbon Nanorods for Enhancing Electrocatalysis and for Improving Asymmetric Supercapacitors. Advanced Functional Materials, 2016, 26, 7766-7774.	7.8	75
53	Rational inert-basal-plane activating design of ultrathin 1T′ phase MoS ₂ with a MoO ₃ heterostructure for enhancing hydrogen evolution performances. Nanoscale, 2018, 10, 16531-16538.	2.8	75

 $_{54}$ Comparison Study of Morphology and Crystallization Behavior of Polyethylene and Poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

#	Article	IF	CITATIONS
55	Synthesis of Strongly Fluorescent Molybdenum Disulfide Nanosheets for Cell-Targeted Labeling. ACS Applied Materials & Interfaces, 2014, 6, 19888-19894.	4.0	73
56	Designing new fullerene derivatives as electron transporting materials for efficient perovskite solar cells with improved moisture resistance. Nano Energy, 2016, 30, 341-346.	8.2	72
57	Recent Progress on Two-Dimensional Nanoflake Ensembles for Energy Storage Applications. Nano-Micro Letters, 2018, 10, 66.	14.4	71
58	A green route to fabricate MoS ₂ nanosheets in water–ethanol–CO ₂ . Chemical Communications, 2015, 51, 6726-6729.	2.2	70
59	Two-dimensional amorphous heterostructures of Ag/a-WO3- for high-efficiency photocatalytic performance. Applied Catalysis B: Environmental, 2019, 245, 648-655.	10.8	69
60	Biomass-derived three-dimensional porous N-doped carbonaceous aerogel for efficient supercapacitor electrodes. RSC Advances, 2014, 4, 23412.	1.7	68
61	Ultrasensitive Surfaceâ€Enhanced Raman Spectroscopy Detection Based on Amorphous Molybdenum Oxide Quantum Dots. Small, 2018, 14, e1801523.	5.2	65
62	2D amorphous-MoO3â^'x@Ti3C2-MXene non-van der Waals heterostructures as anode materials for lithium-ion batteries. Nano Energy, 2021, 86, 106139.	8.2	63
63	Dual template effect of supercritical CO ₂ in ionic liquid to fabricate a highly mesoporous cobalt metal–organic framework. Chemical Communications, 2015, 51, 13197-13200.	2.2	60
64	Defect engineering of two-dimensional WO 3 nanosheets for enhanced electrochromism and photoeletrochemical performance. Applied Surface Science, 2017, 400, 57-63.	3.1	57
65	Carbon nanotube-induced phase and stability engineering: a strained cobalt-doped WSe ₂ /MWNT heterostructure for enhanced hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 4793-4800.	5.2	56
66	Fabrication of PVA/graphene oxide/TiO2 composite nanofibers through electrospinning and interface sol–gel reaction: Effect of graphene oxide on PVA nanofibers and growth of TiO2. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 457, 318-325.	2.3	55
67	High-efficiency exfoliation of layered materials into 2D nanosheets in switchable CO2/Surfactant/H2O system. Scientific Reports, 2015, 5, 16764.	1.6	55
68	Magnetically separable and recyclable Fe3O4–polydopamine hybrid hollow microsphere for highly efficient peroxidase mimetic catalysts. Journal of Colloid and Interface Science, 2016, 469, 69-77.	5.0	55
69	Building of peculiar heterostructure of Ag/two-dimensional fullerene shell-WO3-x for enhanced photoelectrochemical performance. Applied Catalysis B: Environmental, 2018, 231, 381-390.	10.8	54
70	Periodic Patterning on Carbon Nanotubes:Â Supercritical CO2-Induced Polyethylene Epitaxy. Macromolecules, 2007, 40, 8821-8826.	2.2	53
71	Colloidal Precursor-Induced Growth of Ultra-Even CH3NH3PbI3 for High-Performance Paintable Carbon-Based Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 30184-30192.	4.0	53
72	High-throughput, direct exfoliation of graphite to graphene via a cooperation of supercritical CO2 and pyrene-polymers. RSC Advances, 2012, 2, 10632.	1.7	51

#	Article	IF	CITATIONS
73	A self-template and self-activation co-coupling green strategy to synthesize high surface area ternary-doped hollow carbon microspheres for high performance supercapacitors. Journal of Colloid and Interface Science, 2018, 524, 165-176.	5.0	51
74	Atomic Plane-Vacancy Engineering of Transition-Metal Dichalcogenides with Enhanced Hydrogen Evolution Capability. ACS Applied Materials & Interfaces, 2019, 11, 25264-25270.	4.0	51
75	Facile Fabrication of Flexible Microsupercapacitor with High Energy Density. Advanced Materials Technologies, 2016, 1, 1600166.	3.0	48
76	Lowâ€Noise Dualâ€Band Polarimetric Image Sensor Based on 1D Bi ₂ S ₃ Nanowire. Advanced Science, 2021, 8, e2100075.	5.6	48
77	Building a lateral/vertical 1T-2H MoS ₂ /Au heterostructure for enhanced photoelectrocatalysis and surface enhanced Raman scattering. Journal of Materials Chemistry A, 2019, 7, 19922-19928.	5.2	47
78	Confining Pd Nanoparticles and Atomically Dispersed Pd into Defective MoO ₃ Nanosheet for Enhancing Electro- and Photocatalytic Hydrogen Evolution Performances. ACS Applied Materials & Interfaces, 2019, 11, 27798-27804.	4.0	47
79	Highâ€Efficiency Encapsulation of Pt Nanoparticles into the Channel of Carbon Nanotubes as an Enhanced Electrocatalyst for Methanol Oxidation. Chemistry - A European Journal, 2013, 19, 16087-16092.	1.7	45
80	Controllable Route to Solid and Hollow Monodisperse Carbon Nanospheres. Journal of Physical Chemistry C, 2009, 113, 10085-10089.	1.5	44
81	In vivo characterization of hair and skin derived carbon quantum dots with high quantum yield as long-term bioprobes in zebrafish. Scientific Reports, 2016, 6, 37860.	1.6	44
82	Perturbation effect of reduced graphene oxide quantum dots (rGOQDs) on aryl hydrocarbon receptor (AhR) pathway in zebrafish. Biomaterials, 2017, 133, 49-59.	5.7	44
83	Study of different effects on foaming process of biodegradable PLA/starch composites in supercritical/compressed carbon dioxide. Journal of Applied Polymer Science, 2008, 109, 2679-2686.	1.3	43
84	Supercritical CO ₂ â€Assisted Reverseâ€Micelleâ€Induced Solutionâ€Phase Fabrication of Twoâ€Dimensional Metallic 1Tâ€MoS ₂ and 1Tâ€WS ₂ . ChemNanoMat, 2017, 3, 466-4	$71^{1.5}_{}$	43
85	Fabrication of a Singleâ€Atom Platinum Catalyst for the Hydrogen Evolution Reaction: A New Protocol by Utilization of H _{<i>x</i>} MoO _{3â^'<i>x</i>} with Plasmon Resonance. ChemCatChem, 2018, 10, 946-950.	1.8	43
86	High-performance, stable and low-cost mesoscopic perovskite (CH3NH3PbI3) solar cells based on poly(3-hexylthiophene)-modified carbon nanotube cathodes. Frontiers of Optoelectronics, 2016, 9, 71-80.	1.9	42
87	Close-Packed Colloidal SiO2as a Nanoreactor: Generalized Synthesis of Metal Oxide Mesoporous Single Crystals and Mesocrystals. Chemistry of Materials, 2014, 26, 5700-5709.	3.2	40
88	Thermoresponsive Photonic Crystal: Synergistic Effect of Poly(<i>N</i> -isopropylacrylamide)- <i>co</i> -acrylic Acid and <i>Morpho</i> Butterfly Wing. ACS Applied Materials & Interfaces, 2015, 7, 8750-8756.	4.0	40
89	Hierarchical Dual‣caffolds Enhance Charge Separation and Collection for High Efficiency Semitransparent Perovskite Solar Cells. Advanced Materials Interfaces, 2016, 3, 1600484.	1.9	40
90	Accurate Control of VS ₂ Nanosheets for Coexisting High Photoluminescence and Photothermal Conversion Efficiency. Angewandte Chemie - International Edition, 2020, 59, 3322-3328.	7.2	40

#	Article	IF	CITATIONS
91	Anderson Localization in 2D Amorphous MoO _{3â€<i>x</i>} Monolayers for Electrochemical Ammonia Synthesis. ChemCatChem, 2019, 11, 5412-5416.	1.8	37
92	Modification of Carbon Nanotubes Using Poly(vinylidene fluoride) with Assistance of Supercritical Carbon Dioxide: The Impact of Solvent. Journal of Physical Chemistry B, 2010, 114, 5257-5262.	1.2	36
93	Controllable-Induced Crystallization of PE- <i>b</i> -PEO on Carbon Nanotubes with Assistance of Supercritical CO ₂ : Effect of Solvent. Macromolecules, 2011, 44, 3958-3965.	2.2	36
94	Modification of Graphene Oxide with Amphiphilic Double-Crystalline Block Copolymer Polyethylene-b-poly(ethylene oxide) with Assistance of Supercritical CO ₂ and Its Further Functionalization. Journal of Physical Chemistry B, 2011, 115, 5815-5826.	1.2	36
95	Amorphous MoO _{3â^'x} nanosheets prepared by the reduction of crystalline MoO ₃ by Mo metal for LSPR and photothermal conversion. Chemical Communications, 2019, 55, 12527-12530.	2.2	36
96	Interplanar Growth of 2D Nonâ€Van der Waals Co ₂ Nâ€Based Heterostructures for Efficient Overall Water Splitting. Advanced Energy Materials, 2020, 10, 2002214.	10.2	36
97	CO ₂ â€Induced 2D Niâ€BDC Metal–Organic Frameworks with Enhanced Photocatalytic CO ₂ Reduction Activity. Advanced Materials Interfaces, 2021, 8, 2100205.	1.9	36
98	Fabrication and assembly of two-dimensional TiO2/WO3·H2O heterostructures with type II band alignment for enhanced photocatalytic performance. Applied Surface Science, 2017, 403, 564-571.	3.1	35
99	Removal of Rhodamine B, a Cationic Dye From Aqueous Solution Using Poly(cyclotriphosphazene-co-4,4â€2-sulfonyldiphenol) Nanotubes. Journal of Macromolecular Science - Pure and Applied Chemistry, 2015, 52, 105-113.	1.2	33
100	Bioâ€Interface of Conducting Polymerâ€Based Materials for Neuroregeneration. Advanced Materials Interfaces, 2015, 2, 1500059.	1.9	33
101	CO 2 -assisted fabrication of novel heterostructures of h-MoO 3 /1T-MoS 2 for enhanced photoelectrocatalytic performance. Applied Surface Science, 2017, 425, 56-62.	3.1	33
102	Facile Fabrication of Pt Nanoparticles on 1-Pyrenamine Functionalized Graphene Nanosheets for Methanol Electrooxidation. ACS Sustainable Chemistry and Engineering, 2013, 1, 527-533.	3.2	32
103	Au nanoparticle decorated N-containing polymer spheres: additive-free synthesis and remarkable catalytic behavior for reduction of 4-nitrophenol. Journal of Materials Science, 2015, 50, 1323-1332.	1.7	32
104	A dual templating route to three-dimensionally ordered mesoporous carbon nanonetworks: tuning the mesopore type for electrochemical performance optimization. Journal of Materials Chemistry A, 2015, 3, 18867-18873.	5.2	31
105	Engineering disorder into exotic electronic 2D TiO ₂ nanosheets for enhanced photocatalytic performance. RSC Advances, 2016, 6, 6133-6137.	1.7	31
106	Triphasic 2D Materials by Vertically Stacking Laterally Heterostructured 2Hâ€ / 1T′â€MoS ₂ on Graphene for Enhanced Photoresponse. Advanced Electronic Materials, 2017, 3, 1700024.	2.6	31
107	Controllable printing of large-scale compact perovskite films for flexible photodetectors. Nano Research, 2022, 15, 1547-1553.	5.8	30
108	The nanoscale carbon p–n junction between carbon nanotubes and N,B-codoped holey graphene enhances the catalytic activity towards selective oxidation. Chemical Communications, 2014, 50, 7517-7520.	2.2	29

#	Article	IF	CITATIONS
109	Supercapacitors: Development of Graphene Oxide/Polyaniline Inks for High Performance Flexible Microsupercapacitors via Extrusion Printing (Adv. Funct. Mater. 21/2018). Advanced Functional Materials, 2018, 28, 1870142.	7.8	29
110	Activation of MoS ₂ Basal Planes for Hydrogen Evolution by Zinc. Angewandte Chemie, 2019, 131, 2051-2055.	1.6	29
111	Supercritical CO ₂ -constructed intralayer [Bi ₂ O ₂] ²⁺ structural distortion for enhanced CO ₂ electroreduction. Journal of Materials Chemistry A, 2020, 8, 13320-13327.	5.2	29
112	2D Material Nanofiltration Membranes: From Fundamental Understandings to Rational Design. Advanced Science, 2021, 8, e2102493.	5.6	29
113	Roomâ€ŧemperature Synthesis of Amorphous Molybdenum Oxide Nanodots with Tunable Localized Surface Plasmon Resonances. Chemistry - an Asian Journal, 2017, 12, 2980-2984.	1.7	28
114	Fabrication and application of substoichiometric tungsten oxide with tunable localized surface plasmon resonances. Applied Surface Science, 2019, 465, 517-525.	3.1	28
115	Synthesis of uniform discrete cage-like nitrogen-doped hollow porous carbon spheres with tunable direct large mesoporous for ultrahigh supercapacitive performance. Applied Surface Science, 2017, 425, 69-76.	3.1	27
116	Building Close Ties Between CO ₂ and Functional Twoâ€Dimensional Nanomaterials with Green Chemistry Strategy. Energy and Environmental Materials, 2018, 1, 46-60.	7.3	26
117	A novel metal-organic layered material with superior supercapacitive performance through ultrafast and reversible tetraethylammonium intercalation. Nano Energy, 2019, 59, 102-109.	8.2	26
118	High-efficiency electrocatalyst for N ₂ conversion to NH ₃ based on Au nanoparticles loaded on defective WO _{3â°'x} . Chemical Communications, 2019, 55, 13307-13310.	2.2	26
119	Effect of multiwalled carbon nanotubes on crystallization behavior of poly(vinylidene fluoride) in different solvents. Journal of Applied Polymer Science, 2011, 119, 1905-1913.	1.3	25
120	Controlled fabrication of noble metal nanoparticles loaded on the surfaces of cyclotriphosphazene-containing polymer nanotubes. Journal of Materials Science, 2012, 47, 1985-1991.	1.7	24
121	Amorphous-MoO _{3â~'x} /MoS ₂ heterostructure: <i>in situ</i> oxidizing amorphization of S-vacancy MoS ₂ for enhanced alkaline hydrogen evolution. Chemical Communications, 2020, 56, 14701-14704.	2.2	24
122	Supercritical CO ₂ â€Tailored 2D Oxygenâ€doped Amorphous Carbon Nitride for Enhanced Photocatalytic Activity. Energy and Environmental Materials, 2022, 5, 912-917.	7.3	24
123	Effect of multiâ€walled carbon nanotubes on crystallization, thermal, and mechanical properties of poly(vinylidene fluoride). Polymer Composites, 2010, 31, 921-927.	2.3	23
124	Polymer Supermolecular Structures Built on Carbon Nanotubes via a Supercritical Carbon Dioxide-Assisted Route. Journal of Physical Chemistry C, 2009, 113, 18531-18535.	1.5	23
125	High-crystallization polyoxymethylene modification on carbon nanotubes with assistance of supercritical carbon dioxide: Molecular interactions and their thermal stability. Polymer, 2011, 52, 472-480.	1.8	23
126	In-situ fabrication of dual porous titanium dioxide films as anode for carbon cathode based perovskite solar cell. Journal of Energy Chemistry, 2015, 24, 736-743.	7.1	23

#	Article	IF	CITATIONS
127	Nearâ€Infrared Photoresponse of Oneâ€&ided Abrupt MAPbI ₃ /TiO ₂ Heterojunction through a Tunneling Process. Advanced Functional Materials, 2016, 26, 8545-8554.	7.8	23
128	An advanced FeCoNi nitro-sulfide hierarchical structure from deep eutectic solvents for enhanced oxygen evolution reaction. Chemical Communications, 2019, 55, 10174-10177.	2.2	23
129	Solid-phase synthesis of atomically thin two-dimensional non-layered MoO ₂ nanosheets for surface enhanced Raman spectroscopy. Journal of Materials Chemistry C, 2019, 7, 7196-7200.	2.7	23
130	Supercritical CO ₂ synthesis of Co-doped MoO _{3â^'x} nanocrystals for multifunctional light utilization. Chemical Communications, 2020, 56, 7649-7652.	2.2	23
131	CO2-Induced Defect Engineering: A New Protocol by Doping Vacancies in 2D Heterostructures for Enhanced Visible-Light Photocatalysis. Applied Surface Science, 2017, 419, 573-579.	3.1	22
132	Supercritical CO2-assisted synthesis of polystyrene/clay nanocomposites via in situ intercalative polymerization. Journal of Applied Polymer Science, 2006, 100, 671-676.	1.3	21
133	NiCo-embedded in hierarchically structured N-doped carbon nanoplates for the efficient electrochemical determination of ascorbic acid, dopamine, and uric acid. RSC Advances, 2015, 5, 65532-65539.	1.7	21
134	Fabrication of poly(cyclotriphosphazene-co-4,4′-sulfonyldiphenol) nanotubes decorated with Ag–Au bimetallic nanoparticles with enhanced catalytic activity for the reduction of 4-nitrophenol. RSC Advances, 2016, 6, 24921-24928.	1.7	21
135	Supercritical CO 2 -assisted phase transformation from orthorhombic to hexagonal MoO 3. Materials Letters, 2017, 201, 129-132.	1.3	21
136	Fabrication of quasi-metallic Ni _x MoO ₃ nanodots for enhanced plasmon resonance and photothermal conversion. Chemical Communications, 2019, 55, 9777-9780.	2.2	21
137	Conversion of non-van der Waals VO2 solid to 2D ferromagnet by CO2-induced phase engineering. Nano Today, 2021, 40, 101272.	6.2	21
138	Building of multifunctional and hierarchical HxMoO3/PNIPAM hydrogel for high-efficiency solar vapor generation. Green Energy and Environment, 2022, 7, 1006-1013.	4.7	21
139	Comparison study of PE epitaxy on carbon nanotubes and graphene oxide and PE/graphene oxide as amphiphilic molecular structure for solvent separation. Applied Surface Science, 2012, 258, 4614-4623.	3.1	20
140	Molecular dynamics simulations of solvent-exfoliation and stabilization of graphene with the assistance of compressed carbon dioxide and pyrene–polyethylene glycol. Physical Chemistry Chemical Physics, 2017, 19, 16062-16070.	1.3	20
141	CO ₂ -Assisted Synthesis of 2D Amorphous MoO _{3–<i>x</i>} Nanosheets: From Top-Down to Bottom-Up. Journal of Physical Chemistry Letters, 2021, 12, 1554-1559.	2.1	20
142	Building of sub-monolayer MoS2-x structure to circumvent the scaling relations in N2-to-NH3 electrocatalysis. Applied Catalysis B: Environmental, 2021, 298, 120615.	10.8	20
143	Grafting of methyl methacrylate ontoAntheraea pernyi silk fiber with the assistance of supercritical CO2. Journal of Applied Polymer Science, 2006, 100, 1299-1305.	1.3	19
144	Ringâ€banded spherulites in PCL and PCL/MWCNT solution asting films and effect of compressed CO ₂ on them. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 784-792.	2.4	19

#	Article	IF	CITATIONS
145	Novel N-doped porous carbon microspheres containing oxygen and phosphorus for CO ₂ absorbent and metal-free electrocatalysts. RSC Advances, 2015, 5, 28080-28084.	1.7	19
146	Supercritical CO2-assisted preparation of 3D graphene-pyrrole/carbon nanotubes/polyaniline Nanoarchitectures for efficient supercapacitor electrodes. Materials Letters, 2015, 139, 471-474.	1.3	19
147	Synthesis of freestanding amorphous giant carbon tubes with outstanding oil sorption and water oxidation properties. Journal of Materials Chemistry A, 2018, 6, 3996-4002.	5.2	19
148	Facile fabrication of N-doped hierarchical porous carbon@CNT coaxial nanocables with high performance for energy storage and conversion. RSC Advances, 2015, 5, 96580-96586.	1.7	18
149	CO ₂ â€Assisted Fabrication of Twoâ€Dimensional Amorphous Molybdenum Oxide Nanosheets for Enhanced Plasmon Resonances. Angewandte Chemie, 2017, 129, 1622-1626.	1.6	18
150	Controlled Assembly of Porphyrinâ€MoS ₂ Composite Nanosheets for Enhanced Photoelectrochemical Performance. Chemistry - an Asian Journal, 2018, 13, 1293-1296.	1.7	18
151	2D Ultrawide Bandgap Semiconductors: Odyssey and Challenges. Small Methods, 2022, 6, e2101348.	4.6	18
152	Hollow polyphosphazene microspheres with cross-linked chemical structure: synthesis, formation mechanism and applications. RSC Advances, 2015, 5, 33720-33728.	1.7	17
153	Frustrated Lewis Pairs Constructed on 2D Amorphous Carbon Nitride for High‣elective Photocatalytic CO ₂ Reduction to CH ₄ . Solar Rrl, 2021, 5, 2100673.	3.1	17
154	CO ₂ â€Assisted Solutionâ€Phase Selective Assembly of 2D WS ₂ â€WO ₃ â‹H ₂ O and 1Tâ€2H MoS ₂ to Desirable Comp Heterostructures. ChemNanoMat, 2017, 3, 632-638.	lex1.5	16
155	1D Cu(OH)2 nanorod/2D SnO2 nanosheets core/shell structured array: Covering with graphene layer leads to excellent performances on lithium-ion battery. Applied Surface Science, 2018, 440, 91-98.	3.1	16
156	Sulfur boosting CO2 reduction activity of bismuth subcarbonate nanosheets via promoting proton-coupled electron transfer. Applied Surface Science, 2021, 562, 150197.	3.1	16
157	Amorphous Materials for Enhanced Localized Surface Plasmon Resonances. Chemistry - an Asian Journal, 2018, 13, 730-739.	1.7	15
158	Atomic Rearrangement and Amorphization Induced by Carbon Dioxide in Two-Dimensional MoO _{3–<i>x</i>} Nanomaterials. Journal of Physical Chemistry Letters, 2021, 12, 6543-6550.	2.1	15
159	Thermal and morphological characterization of composites prepared by solution crystallization method of highâ€density polyethylene on carbon nanotubes. Polymer Composites, 2010, 31, 913-920.	2.3	14
160	Conjugated Polymer Poly(2-methoxy-5-(3′,7′- dimethyloctyloxy)-1,4-phenylenevinylene) Modification on Carbon Nanotubes with Assistance of Supercritical Carbon Dioxide: Chemical Interaction, Solubility, and Light Emission. Journal of Physical Chemistry C, 2010, 114, 10119-10125.	1.5	14
161	Supercritical CO ₂ -assisted amorphization of WO _{2.72} and its high-efficiency photothermal conversion. Chemical Communications, 2020, 56, 7805-7808.	2.2	14
162	Effect of PEG with different M W as template direction reagent on preparation of porous TiO2/SiO2 with assistance of supercritical CO2. Colloid and Polymer Science, 2008, 286, 1485-1491.	1.0	13

#	Article	IF	CITATIONS
163	Template-induced covalent assembly of hybrid particles for the facile fabrication of magnetic Fe3O4–polymer hybrid hollow microspheres. Journal of Materials Science, 2013, 48, 3557-3565.	1.7	13
164	Molecular dynamics simulation on adsorption of pyrene-polyethylene onto ultrathin single-walled carbon nanotube. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 81, 226-234.	1.3	13
165	Synergistic effect of mechanical strain and interfacial-chemical interaction for stable 1T-WSe2 by carbon nanotube and cobalt. Applied Surface Science, 2019, 496, 143694.	3.1	13
166	Atomic-layered Pt clusters on S-vacancy rich MoS _{2â^'x} with high electrocatalytic hydrogen evolution. Chemical Communications, 2021, 57, 7011-7014.	2.2	12
167	CO ₂ -Assisted synthesis of a crystalline/amorphous NiFe-MOF heterostructure for high-efficiency electrocatalytic water oxidation. Chemical Communications, 2022, 58, 6833-6836.	2.2	12
168	Deep eutectic solvents regulation synthesis of multi-metal oxalate for electrocatalytic oxygen evolution reaction and supercapacitor applications. Electrochimica Acta, 2022, 427, 140879.	2.6	12
169	Enhanced Polystyrene Surface Mobility under Carbon Dioxide at Low Temperature for Nanoparticle Embedding Control. Macromolecules, 2015, 48, 1786-1794.	2.2	11
170	Accurate Control of VS ₂ Nanosheets for Coexisting High Photoluminescence and Photothermal Conversion Efficiency. Angewandte Chemie, 2020, 132, 3348-3354.	1.6	11
171	CO ₂ â€Induced Exposure of the Intrinsic Magnetic Surface of BaTiO ₃ to Give Roomâ€Temperature Ferromagnetism. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
172	Preparation of Magnetically Separable Mesoporous Silica Microspheres with Open Pore Systems in Supercritical Carbon Dioxide. Industrial & Engineering Chemistry Research, 2009, 48, 3441-3445.	1.8	10
173	The controlled preparation of cross-linked polyphosphazene nanotubes of high stability via a sacrificial template route. New Journal of Chemistry, 2010, 34, 599.	1.4	10
174	Immobilization of polymeric fluorogen on PDVB nanotubes with the assistance of supercritical CO2 for functional films. Journal of Materials Chemistry C, 2013, 1, 1717.	2.7	10
175	CO ₂ â€Assisted Conversion of Crystal Twoâ€Dimensional Molybdenum Oxide to Amorphism with Plasmon Resonances. Chemistry - A European Journal, 2018, 24, 13693-13700.	1.7	10
176	Bifunctional nanoscale magnetic chains with high saturation magnetization and catalytic activity. Journal of Colloid and Interface Science, 2018, 525, 152-160.	5.0	10
177	Superfast Selfâ€Healing and Photothermal Active Hydrogel with Nondefective Graphene as Effective Additive. Macromolecular Materials and Engineering, 2020, 305, 2000172.	1.7	10
178	Cationâ€Alloyingâ€Induced Blueâ€Shifted and Wideâ€Spectrum Polarizationâ€Sensitive Photodetection in Quasiâ€1D SbBiS ₃ . Small Structures, 2022, 3, .	6.9	10
179	High Performance Perovskite Solar Cells through Surface Modification, Mixed Solvent Engineering and Nanobowl-Assisted Light Harvesting. MRS Advances, 2016, 1, 3175-3184.	0.5	9
180	Liquid crystal behavior induced assembling fabrication of conductive chiral MWCNTs@NCC nanopaper. Applied Surface Science, 2016, 385, 521-528.	3.1	9

#	Article	IF	CITATIONS
181	Dual tuning of 1 D heteroatoms doped porous carbon nanoarchitectures for supercapacitors: the role of balanced P/N doping and core@shell nano-networks. RSC Advances, 2016, 6, 9180-9185.	1.7	9
182	High-frequency fabrication of discrete and dispersible hollow carbon spheres with hierarchical porous shells by using secondary-crosslinking pyrolysis. RSC Advances, 2016, 6, 16141-16149.	1.7	9
183	Uniform Discrete Nitrogenâ€Doped Doubleâ€Shelled Cageâ€like Hollow Carbon Spheres with Direct Large Mesopores for Highâ€Performance Supercapacitors. Energy Technology, 2017, 5, 2198-2204.	1.8	9
184	Controllable solution-fabrication of triphasic 2H@1T-MoS2/graphene heterostructure with assistance of supercritical CO2. Surfaces and Interfaces, 2018, 12, 41-49.	1.5	9
185	A Twoâ€dimensional Amorphous Plasmonic Heterostructure of Pd/MoO _{3â€x} for Enhanced Photoelectrochemical Water Splitting Performance. Chemistry - an Asian Journal, 2021, 16, 1253-1257.	1.7	9
186	2D amorphous bi-metallic NiFe nitrides for a high-efficiency oxygen evolution reaction. Chemical Communications, 2021, 57, 13170-13173.	2.2	9
187	Supercritical carbon dioxideâ€assisted loosening preparation of dry leather. Journal of Applied Polymer Science, 2009, 113, 4015-4022.	1.3	8
188	Effect of supercritical CO2 on the morphology and fluorescent behavior of fluorinated polyylidenefluorenes derivative/graphene oxide nanohybrids. Materials Letters, 2015, 158, 147-150.	1.3	8
189	Multifunctional Clay/PNIPAM Hydrogel Incorporating H x MoO 3 Plasmonic Quantum Dot. Energy and Environmental Materials, 2020, 3, 192-201.	7.3	8
190	Supercritical CO2-driven, periodic patterning on one-dimensionals carbon nanomaterials. Science China Chemistry, 2010, 53, 1525-1533.	4.2	7
191	Preparation of hollow silica microspheres with controlled shell thickness in supercritical fluids. Colloid and Polymer Science, 2011, 289, 1397-1406.	1.0	7
192	Facile fabrication of core–shell structured magnetic Fe3O4/cross-linked polyphosphazene nanocomposite particles with high stability. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	7
193	Generation of 2D nonlayered ferromagnetic VO2(M) nanosheets induced by strain engineering of CO2. Chemical Communications, 2021, 57, 9072-9075.	2.2	7
194	Fabrication of Ag/hâ€MoO ₃ with Surface Plasmon Resonances for Enhanced Photoelectrochemical Performance. Solar Rrl, 2019, 3, 1900242.	3.1	6
195	Fabrication of a Lateral Heterostructure of Crystallized MoO ₂ /Amorphous MoO _{3â€x} for Photothermal Conversion. ChemNanoMat, 2020, 6, 779-782.	1.5	6
196	CO2-assisted fabrication of 2D porous amorphous MoO3â^'x nanosheets for enhanced biosensing. Materials Letters, 2021, 304, 130601.	1.3	6
197	Utilizing Polystyrene Microspheres as Confined Space to Help TiO ₂ Nanocrystals Formation with Assistance of Supercritical CO ₂ . Industrial & Engineering Chemistry Research, 2009, 48, 7103-7109.	1.8	5
198	Synthesis and structural evolution of hollow flower-type mesoporous silica microspheres. Journal of Materials Science, 2013, 48, 2268-2276.	1.7	5

#	Article	IF	CITATIONS
199	Effects of various factors on the modification of carbon nanotubes with polyvinyl alcohol in supercritical CO2 and their application in electrospun fibers. Chemical Research in Chinese Universities, 2014, 30, 690-697.	1.3	5
200	Liquid crystal graphene oxide with different layers: fabrication, characterization and applications. RSC Advances, 2015, 5, 94809-94813.	1.7	5
201	Facile preparation of highly dispersed Pt nanoparticles supported on heteroatom-containing porous carbon nanospheres and their catalytic properties for the reduction of 4-nitrophenol. Journal of Porous Materials, 2018, 25, 1081-1089.	1.3	5
202	SiO2/Fe2O3Mesoporous Composite Prepared With an Activated Carbon Template in Supercritical Carbon Dioxide. Journal of the American Ceramic Society, 2006, 89, 3065-3069.	1.9	4
203	Effect of supercritical CO ₂ on threeâ€dimensional colloid arrays of PSâ€MA–EGDMA. Journal of Applied Polymer Science, 2011, 119, 2393-2399.	1.3	4
204	Preparation of hexagon bowl-like cross-linked polymer microspheres with ordered array and same orientation through direct pyrolysis of soft-core/hard-shell PS particles. Colloid and Polymer Science, 2017, 295, 2151-2161.	1.0	4
205	The coordination chemistry of phosphinidene sulfides. Synthesis and catalytic properties of Pd ₄ and Pt ₄ clusters. Dalton Transactions, 2018, 47, 13342-13344.	1.6	4
206	CO2-assisted fabrication of two-dimensional amorphous transition metal oxides. Dalton Transactions, 2020, 49, 2048-2052.	1.6	4
207	Spherical assembled microstructures: fabrication and their stabilization with assistance of supercritical carbon dioxide. Soft Matter, 2011, 7, 5353.	1.2	3
208	Hierarchical Nanohybrids: 2D Thin Nanoflakes Assembled on Mesoporous Carbon Nanorods for Enhancing Electrocatalysis and for Improving Asymmetric Supercapacitors (Adv. Funct. Mater.) Tj ETQq0 0 0 rgB1	/Øserlock	120 Tf 50 37
209	Strategies for Improving Efficiency and Stability of Perovskite Solar Cells. MRS Advances, 2017, 2, 3051-3060.	0.5	3
210	Supercritical CO2â€assisted Fabrication of Twoâ€dimensional Graphdiyne Oxide Nanosheets for Enhanced Photothermal Conversion. ChemNanoMat, 2021, 7, 1309.	1.5	3
211	Preparation of polystyrene particles with different morphologies. Polymer Engineering and Science, 2011, 51, 1170-1177.	1.5	2
212	Supercritical CO2-assisted fabrication of advanced two-dimensional materials and their heterostructure. Current Opinion in Green and Sustainable Chemistry, 2021, 28, 100424.	3.2	2
213	Progress in the Regulation of Electrode/Electrolyte Interfacial Reactions toward Highâ€voltage Aqueous Hybrid Capacitors. Batteries and Supercaps, 2021, 4, 717-732.	2.4	2
214	CO ₂ â€Induced Twoâ€Dimensional Amorphous TiO ₂ and Its Excellent Filmâ€Forming Properties. ChemNanoMat, 2022, 8, .	1.5	2
215	Pine needle-like nanocomposite: Supercritical CO2 assisted polythiophene synthesis on carbon nanotubes. Chemical Research in Chinese Universities, 2014, 30, 521-526.	1.3	1
216	Frontispiece: CO ₂ â€Induced Exposure of the Intrinsic Magnetic Surface of BaTiO ₃ to Give Roomâ€Temperature Ferromagnetism. Angewandte Chemie - International Edition, 2022, 61, .	7.2	1

#	Article	IF	CITATIONS
217	Innentitelbild: CO ₂ â€Assisted Fabrication of Twoâ€Dimensional Amorphous Molybdenum Oxide Nanosheets for Enhanced Plasmon Resonances (Angew. Chem. 6/2017). Angewandte Chemie, 2017, 129, 1448-1448.	1.6	0
218	Frontispiece: CO2 -Assisted Conversion of Crystal Two-Dimensional Molybdenum Oxide to Amorphism with Plasmon Resonances. Chemistry - A European Journal, 2018, 24, .	1.7	0
219	CO2â€Induced Exposure of the Intrinsic Magnetic Surface of BaTiO3 to Give Roomâ€Temperature Ferromagnetism. Angewandte Chemie, 0, , .	1.6	0
220	Frontispiz: CO ₂ â€Induced Exposure of the Intrinsic Magnetic Surface of BaTiO ₃ to Give Roomâ€Temperature Ferromagnetism. Angewandte Chemie, 2022, 134, .	1.6	0
221	A heterogeneous reaction strategy towards the general synthesis of 2D non-layered nanomaterials. Materials Advances, 0, , .	2.6	0
222	Supercritical CO ₂ -Built 2D Fe _{<i>x</i>} N@FeOOH Heterostructures for Sustainable Sodium Ion Battery. Energy & Fuels, 2022, 36, 7194-7199.	2.5	0
223	Cationâ€Alloyingâ€Induced Blueâ€Shifted and Wideâ€Spectrum Polarizationâ€Sensitive Photodetection in Ouasiâ€ID SbBiS ₃ . Small Structures. 2022. 3	6.9	0