
Vigo Heissmeyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3479355/publications.pdf Version: 2024-02-01

VICO HEISSMEVER

#	Article	IF	CITATIONS
1	FOXP3 Controls Regulatory T Cell Function through Cooperation with NFAT. Cell, 2006, 126, 375-387.	28.9	1,019
2	The Transcription Factor NFAT Promotes Exhaustion of Activated CD8 + T Cells. Immunity, 2015, 42, 265-278.	14.3	555
3	Cleavage of roquin and regnase-1 by the paracaspase MALT1 releases their cooperatively repressed targets to promote TH17 differentiation. Nature Immunology, 2014, 15, 1079-1089.	14.5	238
4	Six RNA Viruses and Forty-One Hosts: Viral Small RNAs and Modulation of Small RNA Repertoires in Vertebrate and Invertebrate Systems. PLoS Pathogens, 2010, 6, e1000764.	4.7	234
5	InÂVivo Killing Capacity of Cytotoxic T Cells Is Limited and Involves Dynamic Interactions and T Cell Cooperativity. Immunity, 2016, 44, 233-245.	14.3	199
6	T cell activation induces proteasomal degradation of Argonaute and rapid remodeling of the microRNA repertoire. Journal of Experimental Medicine, 2013, 210, 417-432.	8.5	180
7	Roquin Paralogs 1 and 2 Redundantly Repress the Icos and Ox40 Costimulator mRNAs and Control Follicular Helper T Cell Differentiation. Immunity, 2013, 38, 655-668.	14.3	178
8	Roquin binds inducible costimulator mRNA and effectors of mRNA decay to induce microRNA-independent post-transcriptional repression. Nature Immunology, 2010, 11, 725-733.	14.5	159
9	Uncoupling Malt1 Threshold Function from Paracaspase Activity Results in Destructive Autoimmune Inflammation. Cell Reports, 2014, 9, 1292-1305.	6.4	133
10	Roquin Suppresses the PI3K-mTOR Signaling Pathway to Inhibit T Helper Cell Differentiation and Conversion of Treg to Tfr Cells. Immunity, 2017, 47, 1067-1082.e12.	14.3	109
11	Epstein-Barr viral miRNAs inhibit antiviral CD4+ T cell responses targeting IL-12 and peptide processing. Journal of Experimental Medicine, 2016, 213, 2065-2080.	8.5	108
12	Elevated Exhaustion Levels of NK and CD8+ T Cells as Indicators for Progression and Prognosis of COVID-19 Disease. Frontiers in Immunology, 2020, 11, 580237.	4.8	96
13	Alternative splicing of MALT1 controls signalling and activation of CD4+ T cells. Nature Communications, 2016, 7, 11292.	12.8	94
14	Induced miRâ€99a expression represses <i>Mtor</i> cooperatively with miRâ€150 to promote regulatory Tâ€cell differentiation. EMBO Journal, 2015, 34, 1195-1213.	7.8	83
15	Structural basis for RNA recognition in roquin-mediated post-transcriptional gene regulation. Nature Structural and Molecular Biology, 2014, 21, 671-678.	8.2	77
16	Eri1 degrades the stem-loop of oligouridylated histone mRNAs to induce replication-dependent decay. Nature Structural and Molecular Biology, 2013, 20, 73-81.	8.2	68
17	MicroRNAs grow up in the immune system. Current Opinion in Immunology, 2008, 20, 281-287.	5.5	63
18	Eri1 regulates microRNA homeostasis and mouse lymphocyte development and antiviral function. Blood, 2012, 120, 130-142.	1.4	61

VIGO HEISSMEYER

#	Article	IF	CITATIONS
19	Roquin binds microRNA-146a and Argonaute2 to regulate microRNA homeostasis. Nature Communications, 2015, 6, 6253.	12.8	59
20	Mouse Eri1 interacts with the ribosome and catalyzes 5.8S rRNA processing. Nature Structural and Molecular Biology, 2008, 15, 523-530.	8.2	53
21	OX40L blockade protects against inflammation-driven fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3901-10.	7.1	50
22	Molecular control of Tfh ell differentiation by Roquin family proteins. Immunological Reviews, 2013, 253, 273-289.	6.0	42
23	Roquin targets mRNAs in a 3′-UTR-specific manner by different modes of regulation. Nature Communications, 2018, 9, 3810.	12.8	40
24	Roquin recognizes a non-canonical hexaloop structure in the 3′-UTR of Ox40. Nature Communications, 2016, 7, 11032.	12.8	38
25	Production and Application of Stable Isotope-Labeled Internal Standards for RNA Modification Analysis. Genes, 2019, 10, 26.	2.4	38
26	Regulation of T cell signaling and autoimmunity by RNA-binding proteins. Current Opinion in Immunology, 2016, 39, 127-135.	5.5	29
27	Posttranscriptional regulation of T helper cell fate decisions. Journal of Cell Biology, 2018, 217, 2615-2631.	5.2	29
28	Immune homeostasis and regulation of the interferon pathway require myeloid-derived Regnase-3. Journal of Experimental Medicine, 2019, 216, 1700-1723.	8.5	29
29	Binding of NUFIP2 to Roquin promotes recognition and regulation of ICOS mRNA. Nature Communications, 2018, 9, 299.	12.8	27
30	Degradation of oligouridylated histone <scp>mRNAs</scp> : see <scp>UUUUU</scp> and goodbye. Wiley Interdisciplinary Reviews RNA, 2014, 5, 577-589.	6.4	23
31	Defining the RBPome of primary T helper cells to elucidate higher-order Roquin-mediated mRNA regulation. Nature Communications, 2021, 12, 5208.	12.8	23
32	Disrupting Roquin-1 interaction with Regnase-1 induces autoimmunity and enhances antitumor responses. Nature Immunology, 2021, 22, 1563-1576.	14.5	22
33	A translational silencing function of MCPIP1/Regnase-1 specified by the target site context. Nucleic Acids Research, 2018, 46, 4256-4270.	14.5	20
34	Validation strategies for antibodies targeting modified ribonucleotides. Rna, 2020, 26, 1489-1506.	3.5	18
35	Posttranscriptional Gene Regulation of T Follicular Helper Cells by RNA-Binding Proteins and microRNAs. Frontiers in Immunology, 2018, 9, 1794.	4.8	17
36	TRAF6 prevents fatal inflammation by homeostatic suppression of MALT1 protease. Science Immunology, 2021, 6, eabh2095.	11.9	17

VIGO HEISSMEYER

#	Article	IF	CITATIONS
37	<scp>RNA</scp> recognition by Roquin in posttranscriptional gene regulation. Wiley Interdisciplinary Reviews RNA, 2016, 7, 455-469.	6.4	15
38	Adenoviral Transduction of Naive CD4 T Cells to Study Treg Differentiation. Journal of Visualized Experiments, 2013, , .	0.3	6
39	Cooperation of RNA-Binding Proteins – a Focus on Roquin Function in T Cells. Frontiers in Immunology, 2022, 13, 839762.	4.8	4
40	Tfh Cell Differentiation: Missing Stat3 Uncovers Interferons' Interference. Immunity, 2014, 40, 307-309.	14.3	3
41	Post-transcriptional control of T-cell development in the thymus. Immunology Letters, 2022, 247, 1-12.	2.5	3