Sarah C Good

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3478979/sarah-c-good-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

4	88	3	4
papers	citations	h-index	g-index
4	137 ext. citations	10.2	2.31
ext. papers		avg, IF	L-index

#	Paper Control of the	IF	Citations
4	Global Proteotoxicity Caused by Human Microglobulin Variants Impairs the Unfolded Protein Response in. <i>International Journal of Molecular Sciences</i> , 2021 , 22,	6.3	2
3	A short motif in the N-terminal region of Bynuclein is critical for both aggregation and function. <i>Nature Structural and Molecular Biology</i> , 2020 , 27, 249-259	17.6	47
2	Increased levels of Stress-inducible phosphoprotein-1 accelerates amyloid-Ideposition in a mouse model of Alzheimerls disease. <i>Acta Neuropathologica Communications</i> , 2020 , 8, 143	7.3	7
1	A PQM-1-Mediated Response Triggers Transcellular Chaperone Signaling and Regulates Organismal Proteostasis. <i>Cell Reports</i> , 2018 , 23, 3905-3919	10.6	32