
Ji-Bao Xia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3478748/publications.pdf Version: 2024-02-01

Ιι-ΒΛΟ ΧΙΛ

#	Article	IF	CITATIONS
1	Photoredox Ni-Catalyzed Selective Coupling of Organic Halides and Oxalates to Esters via Alkoxycarbonyl Radical Intermediates. CCS Chemistry, 2022, 4, 1326-1336.	7.8	10
2	Boryl Radical Activation of Benzylic C–OH Bond: Cross-Electrophile Coupling of Free Alcohols and CO ₂ via Photoredox Catalysis. Journal of the American Chemical Society, 2022, 144, 8551-8559.	13.7	41
3	Photoredox Nickel-Catalyzed Asymmetric Reductive Cross Coupling. Chinese Journal of Organic Chemistry, 2022, 42, 1567.	1.3	0
4	Transition-Metal-Catalyzed Intermolecular C–H Carbonylation toward Amides. Synlett, 2021, 32, 07-13.	1.8	12
5	<scp>Feâ€Catalyzed Pictetâ€Spenglerâ€Type</scp> Cyclization <i>via</i> Selective <scp>Fourâ€Electron</scp> Reductive Functionalization of <scp>CO₂</scp> . Chinese Journal of Chemistry, 2021, 39, 614-620.	4.9	19
6	[3 + 1 + 1] cyclization of vinyl oxiranes with azides and CO by tandem palladium catalysis: efficient synthesis of oxazolidinones. Organic Chemistry Frontiers, 2021, 8, 4112-4117.	4.5	6
7	Catalytic synthesis of functionalized amidines <i>via</i> cobalt-carbene radical coupling with isocyanides and amines. Organic Chemistry Frontiers, 2021, 8, 1544-1550.	4.5	9
8	Intermolecular C–H Amidation of Alkenes with Carbon Monoxide and Azides via Tandem Palladium Catalysis. Synthesis, 2021, 53, 3361-3371.	2.3	0
9	Highly Regio- and Enantioselective Reductive Coupling of Alkynes and Aldehydes via Photoredox Cobalt Dual Catalysis. Journal of the American Chemical Society, 2021, 143, 7306-7313.	13.7	74
10	Pd atalyzed Amidation of Silyl Enol Ethers With CO and Azides via an Isocyanate Intermediate. Asian Journal of Organic Chemistry, 2021, 10, 1704-1707.	2.7	3
11	Photoredox Ni-Catalyzed Branch-Selective Reductive Coupling of Aldehydes with 1,3-Dienes. ACS Catalysis, 2020, 10, 1528-1534.	11.2	55
12	Redox-Triggered Ruthenium-Catalyzed Remote C–H Acylation with Primary Alcohols. ACS Catalysis, 2020, 10, 12987-12995.	11.2	20
13	NHC-Nickel Catalyzed C–N Bond Cleavage of Mono-protected Anilines for C–C Cross-Coupling. Organic Letters, 2020, 22, 9609-9613.	4.6	6
14	Pd-catalyzed amidation of 1,3-diketones with CO and azides via a nitrene intermediate. Chemical Communications, 2020, 56, 11437-11440.	4.1	13
15	Lewis Base-Catalyzed Amino-Acylation of Arylallenes via C–N Bond Cleavage: Reaction Development and Mechanistic Studies. ACS Catalysis, 2020, 10, 5419-5429.	11.2	20
16	Recent Advances of CO ₂ Fixation via Asymmetric Catalysis for the Direct Synthesis of Optically Active Small Molecules. Chinese Journal of Organic Chemistry, 2020, 40, 2208.	1.3	30
17	Front Cover Picture: Iron atalyzed Selective <i>N</i> â€Methylation and <i>N</i> â€Formylation of Amines with CO ₂ (Adv. Synth. Catal. 22/2019). Advanced Synthesis and Catalysis, 2019, 361, 5069-5069.	4.3	4
18	Iron atalyzed Selective <i>N</i> â€Methylation and <i>N</i> â€Formylation of Amines with CO ₂ . Advanced Synthesis and Catalysis, 2019, 361, 5098-5104.	4.3	48

JI-BAO XIA

#	Article	IF	CITATIONS
19	Nickel-Catalyzed Kumada Coupling of Boc-Activated Aromatic Amines via Nondirected Selective Aryl C–N Bond Cleavage. Organic Letters, 2019, 21, 1226-1231.	4.6	44
20	Intermolecular Câ^'H Amidation of (Hetero)arenes to Produce Amides through Rhodiumâ€Catalyzed Carbonylation of Nitrene Intermediates. Angewandte Chemie, 2019, 131, 8979-8984.	2.0	6
21	Intermolecular Câ^'H Amidation of (Hetero)arenes to Produce Amides through Rhodiumâ€Catalyzed Carbonylation of Nitrene Intermediates. Angewandte Chemie - International Edition, 2019, 58, 8887-8892.	13.8	35
22	Tetramethylguanidine (TMG)-catalyzed reductive spirocyclization of tryptamine derivatives with formic acid as a C1 synthon. Tetrahedron Letters, 2019, 60, 1487-1489.	1.4	3
23	Pd/Cu Cocatalyzed Oxidative Tandem C–H Aminocarbonylation and Dehydrogenation of Tryptamines: Synthesis of Carbolinones. Journal of Organic Chemistry, 2019, 84, 3357-3369.	3.2	26
24	Palladium-Catalyzed Enantioselective C–H Aminocarbonylation: Synthesis of Chiral Isoquinolinones. Organic Letters, 2019, 21, 1749-1754.	4.6	52
25	DBUâ€Catalyzed Selective <i>N</i> â€Methylation and <i>N</i> â€Formylation of Amines with CO ₂ and Polymethylhydrosiloxane. Advanced Synthesis and Catalysis, 2018, 360, 2364-2369.	4.3	63
26	Transition-Metal-Free Reductive Deoxygenative Olefination with CO ₂ . Organic Letters, 2018, 20, 3282-3285.	4.6	24
27	Ketone-catalyzed photochemical C(sp3)–H chlorination. Tetrahedron, 2017, 73, 3696-3701.	1.9	25
28	Reductive CO ₂ Fixation via Tandem C–C and C–N Bond Formation: Synthesis of Spiro-indolepyrrolidines. Organic Letters, 2017, 19, 4259-4262.	4.6	67
29	Synthesis of Planar Chiral Ferrocenes by Transitionâ€Metalâ€Catalyzed Enantioselective Câ^'H Activation. ChemCatChem, 2016, 8, 68-73.	3.7	102
30	A Simple Method for the Electrophilic Cyanation of Secondary Amines. Organic Letters, 2014, 16, 247-249.	4.6	26
31	Vanadium-catalyzed oxidative Strecker reaction: α-C–H cyanation of para-methoxyphenyl (PMP)-protected primary amines. Tetrahedron Letters, 2014, 55, 232-234.	1.4	23
32	Vanadium-catalyzed C(sp ³)–H fluorination reactions. Organic Chemistry Frontiers, 2014, 1, 468-472.	4.5	75
33	Visible light-promoted metal-free sp ³ -C–H fluorination. Chemical Communications, 2014, 50, 11701-11704.	4.1	116
34	Visible Light-Promoted Metal-Free C–H Activation: Diarylketone-Catalyzed Selective Benzylic Mono- and Difluorination. Journal of the American Chemical Society, 2013, 135, 17494-17500.	13.7	471
35	A highly selective vanadium catalyst for benzylic C–H oxidation. Chemical Science, 2012, 3, 2240.	7.4	54
36	Iridium-Catalyzed Asymmetric Allylic Substitutions. Topics in Organometallic Chemistry, 2011, , 155-207.	0.7	197

JI-BAO XIA

#	Article	IF	CITATIONS
37	Enantioselective Synthesis of 3â€Azabicyclo[4.1.0]heptenes and 3â€Azabicyclo[3.2.0]heptenes by Irâ€Catalyzed Asymmetric Allylic Amination of <i>N</i> â€Tosyl Propynylamine and Ptâ€Catalyzed Cycloisomerization. Chemistry - A European Journal, 2010, 16, 6442-6446.	3.3	49
38	Synthesis of Biindolizines through Highly Regioselective Palladium-Catalyzed Câ^'H Functionalization. Journal of Organic Chemistry, 2009, 74, 456-458.	3.2	89
39	Synthesis of 3-Haloindolizines by Copper(II) Halide Mediated Direct Functionalization of Indolizines. Organic Letters, 2009, 11, 1187-1190.	4.6	52
40	Palladium-Catalyzed Aryl–Aryl Bond Formation Through Double C–H Activation. Topics in Current Chemistry, 2009, , 165-194.	4.0	120
41	Carbonâ^'Carbon Bond Formation through Double sp ² Câ^'H Activations:  Synthesis of Ferrocenyl Oxazoline Derivatives. Organometallics, 2007, 26, 4869-4871.	2.3	185
42	Bis(μ-2,5-di-3-pyridyl-1,3,4-oxadiazole-κ2N2:N5)disilver(I) bis(trifluoromethanesulfonate). Acta Crystallographica Section E: Structure Reports Online, 2006, 62, m247-m248.	0.2	1