List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3478311/publications.pdf Version: 2024-02-01

ZHI-KANC XII

#	Article	IF	CITATIONS
1	Mussel-inspired modification of a polymer membrane for ultra-high water permeability and oil-in-water emulsion separation. Journal of Materials Chemistry A, 2014, 2, 10225-10230.	5.2	620
2	Janus Membranes: Exploring Duality for Advanced Separation. Angewandte Chemie - International Edition, 2016, 55, 13398-13407.	7.2	407
3	CuSO ₄ /H ₂ O ₂ â€Induced Rapid Deposition of Polydopamine Coatings with High Uniformity and Enhanced Stability. Angewandte Chemie - International Edition, 2016, 55, 3054-3057.	7.2	403
4	Surface engineering of polymer membranes via mussel-inspired chemistry. Journal of Membrane Science, 2015, 483, 42-59.	4.1	358
5	Nanomaterials with a photothermal effect for antibacterial activities: an overview. Nanoscale, 2019, 11, 8680-8691.	2.8	338
6	Ultrathin metal/covalent–organic framework membranes towards ultimate separation. Chemical Society Reviews, 2019, 48, 3811-3841.	18.7	334
7	Mineral-Coated Polymer Membranes with Superhydrophilicity and Underwater Superoleophobicity for Effective Oil/Water Separation. Scientific Reports, 2013, 3, 2776.	1.6	305
8	Silica-Decorated Polypropylene Microfiltration Membranes with a Mussel-Inspired Intermediate Layer for Oil-in-Water Emulsion Separation. ACS Applied Materials & Interfaces, 2014, 6, 12566-12572.	4.0	295
9	Nanofiltration membranes via co-deposition of polydopamine/polyethylenimine followed by cross-linking. Journal of Membrane Science, 2015, 476, 50-58.	4.1	294
10	Nanofiltration membranes with cellulose nanocrystals as an interlayer for unprecedented performance. Journal of Materials Chemistry A, 2017, 5, 16289-16295.	5.2	291
11	Surface hydrophilization of microporous polypropylene membrane by grafting zwitterionic polymer for anti-biofouling. Journal of Membrane Science, 2010, 362, 255-264.	4.1	261
12	Photocatalytic Nanofiltration Membranes with Self leaning Property for Wastewater Treatment. Advanced Functional Materials, 2017, 27, 1700251.	7.8	245
13	Thin film composite membranes combining carbon nanotube intermediate layer and microfiltration support for high nanofiltration performances. Journal of Membrane Science, 2016, 515, 238-244.	4.1	239
14	Dopamine: Just the Right Medicine for Membranes. Advanced Functional Materials, 2018, 28, 1705327.	7.8	222
15	Fabrication of antifouling membrane surface by poly(sulfobetaine methacrylate)/polydopamine co-deposition. Journal of Membrane Science, 2014, 466, 18-25.	4.1	220
16	Polyphenol Coating as an Interlayer for Thin-Film Composite Membranes with Enhanced Nanofiltration Performance. ACS Applied Materials & Interfaces, 2016, 8, 32512-32519.	4.0	206
17	Ordered Microporous Membranes Templated by Breath Figures for Size-Selective Separation. Journal of the American Chemical Society, 2012, 134, 95-98.	6.6	202
18	Dopamine-assisted co-deposition: An emerging and promising strategy for surface modification. Advances in Colloid and Interface Science, 2018, 256, 111-125.	7.0	202

#	Article	IF	CITATIONS
19	Harnessing Solarâ€Driven Photothermal Effect toward the Water–Energy Nexus. Advanced Science, 2019, 6, 1900883.	5.6	188
20	Co-deposition of catechol/polyethyleneimine on porous membranes for efficient decolorization of dye water. Journal of Materials Chemistry A, 2015, 3, 14438-14444.	5.2	150
21	Polydopamine-Coated Porous Substrates as a Platform for Mineralized β-FeOOH Nanorods with Photocatalysis under Sunlight. ACS Applied Materials & Interfaces, 2015, 7, 11567-11574.	4.0	150
22	Multiple interfaces in self-assembled breath figures. Chemical Communications, 2014, 50, 4024-4039.	2.2	149
23	Polyphenol-Assisted Exfoliation of Transition Metal Dichalcogenides into Nanosheets as Photothermal Nanocarriers for Enhanced Antibiofilm Activity. ACS Nano, 2018, 12, 12347-12356.	7.3	147
24	Surface modification of polypropylene microporous membranes to improve their antifouling property in MBR: NH plasma treatment. Separation and Purification Technology, 2005, 45, 8-15.	3.9	143
25	Surface and interface engineering for organic–inorganic composite membranes. Journal of Materials Chemistry A, 2016, 4, 9716-9729.	5.2	143
26	Deposition and Adhesion of Polydopamine on the Surfaces of Varying Wettability. ACS Applied Materials & Interfaces, 2017, 9, 30943-30950.	4.0	139
27	Nanofiltration Membrane with a Mussel-Inspired Interlayer for Improved Permeation Performance. Langmuir, 2017, 33, 2318-2324.	1.6	136
28	Graphene Oxide Nanofiltration Membranes Stabilized by Cationic Porphyrin for High Salt Rejection. ACS Applied Materials & Interfaces, 2016, 8, 12588-12593.	4.0	133
29	Janus Membranes with Charged Carbon Nanotube Coatings for Deemulsification and Separation of Oil-in-Water Emulsions. ACS Applied Materials & Interfaces, 2018, 10, 9832-9840.	4.0	130
30	Janus membranes with controllable asymmetric configurations for highly efficient separation of oil-in-water emulsions. Journal of Materials Chemistry A, 2019, 7, 7907-7917.	5.2	128
31	Solar-driven self-heating sponges for highly efficient crude oil spill remediation. Journal of Materials Chemistry A, 2018, 6, 8880-8885.	5.2	127
32	CuSO ₄ /H ₂ O ₂ -Triggered Polydopamine/Poly(sulfobetaine) Tj ETQq0 0 0 r	gBT /Over 1.6	lock 10 Tf 50
33	Janus Membranes with Asymmetric Wettability for Fine Bubble Aeration. Advanced Materials Interfaces, 2016, 3, 1500774.	1.9	119
34	CuSO ₄ /H ₂ O ₂ â€Induced Rapid Deposition of Polydopamine Coatings with High Uniformity and Enhanced Stability. Angewandte Chemie, 2016, 128, 3106-3109.	1.6	117
35	Advanced functional polymer materials. Materials Chemistry Frontiers, 2020, 4, 1803-1915.	3.2	117
36	Polypropylene microfiltration membranes modified with TiO2 nanoparticles for surface wettability	4.1	116

surface wettab and antifouling property. Journal of Membrane Science, 2016, 500, 8-15. 36 ιy

#	Article	IF	CITATIONS
37	Dopamine-Triggered One-Step Polymerization and Codeposition of Acrylate Monomers for Functional Coatings. ACS Applied Materials & Interfaces, 2017, 9, 34356-34366.	4.0	114
38	Janus hollow fiber membrane with a mussel-inspired coating on the lumen surface for direct contact membrane distillation. Journal of Membrane Science, 2017, 523, 1-7.	4.1	110
39	Robust Coatings via Catechol–Amine Codeposition: Mechanism, Kinetics, and Application. ACS Applied Materials & Interfaces, 2018, 10, 5902-5908.	4.0	110
40	Acrylonitrile-Based Copolymer Membranes Containing Reactive Groups:  Surface Modification by the Immobilization of Poly(ethylene glycol) for Improving Antifouling Property and Biocompatibility. Langmuir, 2003, 19, 9889-9895.	1.6	109
41	Nanocomposite Membranes via the Codeposition of Polydopamine/Polyethylenimine with Silica Nanoparticles for Enhanced Mechanical Strength and High Water Permeability. ACS Applied Materials & Interfaces, 2017, 9, 2966-2972.	4.0	109
42	Improvement of the antifouling characteristics for polypropylene microporous membranes by the sequential photoinduced graft polymerization of acrylic acid. Journal of Membrane Science, 2006, 281, 658-665.	4.1	107
43	Polydopamine Coatings with Nanopores for Versatile Molecular Separation. ACS Applied Materials & Interfaces, 2017, 9, 14437-14444.	4.0	107
44	Nanocomposite membranes embedded with functionalized MoS2 nanosheets for enhanced interfacial compatibility and nanofiltration performance. Journal of Membrane Science, 2019, 591, 117316.	4.1	107
45	Polyamide nanofilms with linearly-tunable thickness for high performance nanofiltration. Journal of Membrane Science, 2021, 627, 119142.	4.1	107
46	Co-deposition Kinetics of Polydopamine/Polyethyleneimine Coatings: Effects of Solution Composition and Substrate Surface. Langmuir, 2018, 34, 13123-13131.	1.6	106
47	Structure and performance of polyacrylonitrile membranes prepared via thermally induced phase separation. Journal of Membrane Science, 2012, 409-410, 355-364.	4.1	103
48	Water–Salt Oligomers Enable Supersoluble Electrolytes for Highâ€Performance Aqueous Batteries. Advanced Materials, 2021, 33, e2007470.	11.1	102
49	Compressible Carbon Sponges from Delignified Wood for Fast Cleanup and Enhanced Recovery of Crude Oil Spills by Joule Heat and Photothermal Effect. Advanced Functional Materials, 2021, 31, 2006806.	7.8	100
50	Directed Self-Assembly of Polystyrene- <i>b</i> -poly(propylene carbonate) on Chemical Patterns via Thermal Annealing for Next Generation Lithography. Nano Letters, 2017, 17, 1233-1239.	4.5	97
51	Janus Membranes with Opposing Surface Wettability Enabling Oil-to-Water and Water-to-Oil Emulsification. ACS Applied Materials & Interfaces, 2017, 9, 5062-5066.	4.0	97
52	Polydopamine gradients by oxygen diffusion controlled autoxidation. Chemical Communications, 2013, 49, 10522.	2.2	96
53	Effects of polyethyleneimine molecular weight and proportion on the membrane hydrophilization by codepositing with dopamine. Journal of Applied Polymer Science, 2016, 133, .	1.3	95
54	Construction of a Comb-like Glycosylated Membrane Surface by a Combination of UV-Induced Graft Polymerization and Surface-Initiated ATRP. Langmuir, 2007, 23, 6684-6690.	1.6	93

#	Article	IF	CITATIONS
55	Nanocomposite membranes of polydopamine/electropositive nanoparticles/polyethyleneimine for nanofiltration. Journal of Membrane Science, 2018, 545, 99-106.	4.1	90
56	Membrane surface with antibacterial property by grafting polycation. Journal of Membrane Science, 2011, 376, 132-141.	4.1	86
57	Novel nanofiltration membrane with ultrathin zirconia film as selective layer. Journal of Membrane Science, 2016, 500, 265-271.	4.1	84
58	Composite free-standing films of polydopamine/polyethyleneimine grown at the air/water interface. RSC Advances, 2014, 4, 45415-45418.	1.7	81
59	Interfacial Polymerization at the Alkane/Ionic Liquid Interface. Angewandte Chemie - International Edition, 2021, 60, 14636-14643.	7.2	81
60	Forward osmosis membranes with unprecedented water flux. Journal of Membrane Science, 2017, 529, 47-54.	4.1	79
61	Surface hydrophilization of microporous polypropylene membrane by the interfacial crosslinking of polyethylenimine. Journal of Membrane Science, 2009, 337, 70-80.	4.1	78
62	PVDF/PAN blend separators via thermally induced phase separation for lithium ion batteries. Polymer, 2016, 107, 54-60.	1.8	77
63	Highly Stable, Protein-Resistant Surfaces via the Layer-by-Layer Assembly of Poly(sulfobetaine) Tj ETQq1 1 0.7843	14 rgBT /C 1.6	verlock 10
64	Enzyme-triggered coatings of tea catechins/chitosan for nanofiltration membranes with high performance. Green Chemistry, 2016, 18, 6205-6208.	4.6	75
65	Electrospun Nanofibers Modified with Phospholipid Moieties for Enzyme Immobilization. Macromolecular Rapid Communications, 2006, 27, 1341-1345.	2.0	74
66	Co-deposition of tannic acid and diethlyenetriamine for surface hydrophilization of hydrophobic polymer membranes. Applied Surface Science, 2016, 360, 291-297.	3.1	74
67	Surface engineering of macroporous polypropylene membranes. Soft Matter, 2009, 5, 1775.	1.2	72
68	Covalent Attachment of Phospholipid Analogous Polymers To Modify a Polymeric Membrane Surface: A Novel Approach. Langmuir, 2004, 20, 1481-1488.	1.6	71
69	Delignified wood with unprecedented anti-oil properties for the highly efficient separation of crude oil/water mixtures. Journal of Materials Chemistry A, 2019, 7, 16735-16741.	5.2	71
70	Fabrication of Glycosylated Surface on Polymer Membrane by UV-Induced Graft Polymerization for Lectin Recognition. Langmuir, 2006, 22, 9345-9349.	1.6	70
71	Humidityâ€Triggered Selfâ€Healing of Microporous Polyelectrolyte Multilayer Coatings for Hydrophobic Drug Delivery. Advanced Functional Materials, 2015, 25, 7470-7477.	7.8	70
72	Surface modification of polypropylene microfiltration membrane by grafting poly(sulfobetaine) Tj ETQq0 0 0 rgBT	/Overlock 4.1	10 Tf 50 67 69

Membrane Science, 2015, 492, 249-256.

#	Article	IF	CITATIONS
73	Nanofibrous Membranes Containing Carbon Nanotubes: Electrospun for Redox Enzyme Immobilization. Macromolecular Rapid Communications, 2006, 27, 516-521.	2.0	68
74	Bio-inspired CaCO3 coating for superhydrophilic hybrid membranes with high water permeability. Journal of Materials Chemistry, 2012, 22, 22727.	6.7	68
75	Polar polymer membranes via thermally induced phase separation using a universal crystallizable diluent. Journal of Membrane Science, 2013, 446, 482-491.	4.1	67
76	Surface hydrophilization for polypropylene microporous membranes: A facile interfacial crosslinking approach. Journal of Membrane Science, 2009, 326, 372-381.	4.1	66
77	Nanofiltration membranes with hydrophobic microfiltration substrates for robust structure stability and high water permeation flux. Journal of Membrane Science, 2020, 593, 117444.	4.1	65
78	Nanofiltration membranes with narrowed pore size distribution via pore wall modification. Chemical Communications, 2016, 52, 8589-8592.	2.2	64
79	Tunable Assembly of Nanoparticles on Patterned Porous Film. Langmuir, 2010, 26, 15982-15988.	1.6	62
80	Nanofiltration Membranes with Narrow Pore Size Distribution via Contra-Diffusion-Induced Mussel-Inspired Chemistry. ACS Applied Materials & Interfaces, 2016, 8, 29696-29704.	4.0	59
81	Asymmetric Surface Engineering for Janus Membranes. Advanced Materials Interfaces, 2020, 7, 1902064.	1.9	58
82	Novel separation membranes based on zwitterionic colloid particles: tunable selectivity and enhanced antifouling property. Journal of Materials Chemistry A, 2013, 1, 12213.	5.2	55
83	Antimicrobial membrane surfaces via efficient polyethyleneimine immobilization and cationization. Applied Surface Science, 2017, 426, 972-979.	3.1	55
84	Mussel-inspired polydopamine coatings for large-scale and angle-independent structural colors. Journal of Materials Chemistry C, 2017, 5, 3898-3902.	2.7	54
85	Bioinspired Block Copolymer for Mineralized Nanoporous Membrane. ACS Nano, 2018, 12, 11471-11480.	7.3	54
86	Polystyrenes with Hydrophilic End Groups: Synthesis, Characterization, and Effects on the Self-Assembly of Breath Figure Arrays. Journal of Physical Chemistry B, 2014, 118, 845-854.	1.2	53
87	Hierarchically porous carbon membranes derived from PAN and their selective adsorption of organic dyes. Chinese Journal of Polymer Science (English Edition), 2016, 34, 23-33.	2.0	53
88	Ceramic membranes with mussel-inspired and nanostructured coatings for water-in-oil emulsions separation. Separation and Purification Technology, 2019, 212, 737-746.	3.9	53
89	Revisiting the adhesion mechanism of mussel-inspired chemistry. Chemical Science, 2022, 13, 1698-1705.	3.7	53
90	Catalase Immobilization on Electrospun Nanofibers:  Effects of Porphyrin Pendants and Carbon Nanotubes. Journal of Physical Chemistry C, 2007, 111, 14091-14097.	1.5	52

#	Article	IF	CITATIONS
91	Carboxylated wood-based sponges with underoil superhydrophilicity for deep dehydration of crude oil. Journal of Materials Chemistry A, 2020, 8, 11354-11361.	5.2	52
92	Functionalization of cellulose nanofiber mats with phthalocyanine for decoloration of reactive dye wastewater. Cellulose, 2011, 18, 1295-1303.	2.4	51
93	Polyacrylonitrile membranes via thermally induced phase separation: Effects of polyethylene glycol with different molecular weights. Journal of Membrane Science, 2013, 437, 227-236.	4.1	51
94	Patterned biocatalytic films via one-step self-assembly. Chemical Communications, 2012, 48, 4417.	2.2	50
95	Separators with Biomineralized Zirconia Coatings for Enhanced Thermo- and Electro-Performance of Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 21971-21978.	4.0	50
96	Vacuum-assisted diamine monomer distribution for synthesizing polyamide composite membranes by interfacial polymerization. Journal of Membrane Science, 2020, 616, 118557.	4.1	50
97	Composite nanofiltration membranes via the co-deposition and cross-linking of catechol/polyethylenimine. RSC Advances, 2016, 6, 34096-34102.	1.7	49
98	Cellulose nanocrystals as anti-oil nanomaterials for separating crude oil from aqueous emulsions and mixtures. Journal of Materials Chemistry A, 2019, 7, 7033-7041.	5.2	49
99	Hollow fiber membranes with Janus surfaces for continuous deemulsification and separation of oil-in-water emulsions. Journal of Membrane Science, 2020, 602, 117964.	4.1	49
100	Polymer membrane with a mineral coating for enhanced curling resistance and surface wettability. Chemical Communications, 2015, 51, 12779-12782.	2.2	48
101	Waterâ€Triggered Selfâ€Healing Coatings of Hydrogenâ€Bonded Complexes for High Binding Affinity and Antioxidative Property. Advanced Materials Interfaces, 2016, 3, 1600167.	1.9	48
102	Enhanced Stain Removal and Comfort Control Achieved by Cross-Linking Light and Thermo Dual-Responsive Copolymer onto Cotton Fabrics. ACS Applied Materials & Interfaces, 2019, 11, 5414-5426.	4.0	48
103	Wettability Switchable Membranes for Separating Both Oil-in-water and water-in-oil emulsions. Journal of Membrane Science, 2021, 624, 118976.	4.1	48
104	Surface glycosylation of polymer membrane by thiol-yne click chemistry for affinity adsorption of lectin. Chemical Communications, 2011, 47, 3930.	2.2	47
105	Bioinspired Polydopamine/Polyzwitterion Coatings for Underwater Anti-Oil and -Freezing Surfaces. Langmuir, 2019, 35, 1895-1901.	1.6	47
106	Surface modification of poly(acrylonitrile-co-maleic acid) membranes by the immobilization of poly(ethylene glycol). Journal of Membrane Science, 2004, 235, 147-155.	4.1	46
107	Fabrication of Perforated Isoporous Membranes via a Transfer-Free Strategy: Enabling High-Resolution Separation of Cells. ACS Applied Materials & amp; Interfaces, 2014, 6, 22400-22407.	4.0	46
108	Mineralized polyacrylonitrile-based ultrafiltration membranes with improved water flux and rejection towards dye. Journal of Membrane Science, 2013, 441, 112-119.	4.1	45

#	Article	IF	CITATIONS
109	Poly(vinylidene fluoride) ultrafiltration membranes containing hybrid silica nanoparticles: Preparation, characterization and performance. Polymer, 2014, 55, 1333-1340.	1.8	45
110	Ultra-robust vertically aligned three-dimensional (3D) Janus hollow fiber membranes for interfacial solar-driven steam generation with salt-resistant and multi-media purification. Chemical Engineering Journal, 2021, 425, 130118.	6.6	45
111	Polyacrylonitrile-based nanofibrous membrane with glycosylated surface for lectin affinity adsorption. Journal of Membrane Science, 2011, 366, 272-277.	4.1	44
112	Fluorescent linear CO ₂ -derived poly(hydroxyurethane) for cool white LED. Journal of Materials Chemistry C, 2017, 5, 4892-4898.	2.7	44
113	Janus Poly(Vinylidene Fluoride) Membranes with Penetrative Pores for Photothermal Desalination. Research, 2020, 2020, 3241758.	2.8	42
114	Systematic Investigation on the Formation of Honeycomb-Patterned Porous Films from Amphiphilic Block Copolymers. Journal of Physical Chemistry C, 2015, 119, 1971-1979.	1.5	41
115	Construction of Autonomic Self-Healing CO ₂ -Based Polycarbonates via One-Pot Tandem Synthetic Strategy. Macromolecules, 2018, 51, 1308-1313.	2.2	40
116	Porphyrinated Nanofibers via Copolymerization and Electrospinning. Macromolecular Rapid Communications, 2006, 27, 1533-1538.	2.0	39
117	Codeposition of Levodopa and Polyethyleneimine: Reaction Mechanism and Coating Construction. ACS Applied Materials & amp; Interfaces, 2020, 12, 54094-54103.	4.0	39
118	Mussel-Inspired Modification of Honeycomb Structured Films for Superhydrophobic Surfaces with Tunable Water Adhesion. Journal of Physical Chemistry C, 2015, 119, 3667-3673.	1.5	37
119	Positively-charged nanofiltration membranes constructed via gas/liquid interfacial polymerization for Mg2+/Li+ separation. Journal of Membrane Science, 2022, 644, 119942.	4.1	37
120	Polydopamine Nanotubes Decorated with Ag Nanoparticles as Catalyst for the Reduction of Methylene Blue. ACS Applied Nano Materials, 2020, 3, 156-164.	2.4	36
121	Novel Porphyrinated Polyimide Nanofibers by Electrospinning. Journal of Physical Chemistry C, 2008, 112, 10609-10615.	1.5	35
122	Underwater superoleophobic meshes fabricated by poly(sulfobetaine)/polydopamine co-deposition. RSC Advances, 2015, 5, 47592-47598.	1.7	35
123	Ultrathin Alginate Coatings as Selective Layers for Nanofiltration Membranes with High Performance. ChemSusChem, 2017, 10, 2788-2795.	3.6	35
124	Synthesis of CO ₂ -Based Block Copolymers via Chain Transfer Polymerization Using Macroinitiators: Activity, Blocking Efficiency, and Nanostructure. Macromolecules, 2018, 51, 791-800.	2.2	35
125	Tough and Alkaline-Resistant Mussel-Inspired Wet Adhesion with Surface Salt Displacement via Polydopamine/Amine Synergy. Langmuir, 2019, 35, 5257-5263.	1.6	35
126	Surface Deposition of Juglone/Fe ^{III} on Microporous Membranes for Oil/Water Separation and Dye Adsorption. Langmuir, 2019, 35, 3643-3650.	1.6	35

#	Article	IF	CITATIONS
127	Janus poly(vinylidene fluoride)-graft-(TiO2 nanoparticles and PFDS) membranes with loose architecture and asymmetric wettability for efficient switchable separation of surfactant-stabilized oil/water emulsions. Journal of Membrane Science, 2021, 640, 119837.	4.1	35
128	Polyamide nanofilms synthesized <i>via</i> controlled interfacial polymerization on a "jelly―surface. Chemical Communications, 2020, 56, 7249-7252.	2.2	35
129	Thermally induced phase separation of poly(vinylidene fluoride)/diluent systems: Optical microscope and infrared spectroscopy studies. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1438-1447.	2.4	34
130	Porphyrinated polyimide honeycomb films with high thermal stability for HCl gas sensing. RSC Advances, 2015, 5, 30472-30477.	1.7	34
131	Engineered Coatings via the Assembly of Aminoâ€Quinone Networks. Angewandte Chemie - International Edition, 2021, 60, 2346-2354.	7.2	34
132	Immobilization of lipase onto cellulose ultrafine fiber membrane for oil hydrolysis in high performance bioreactor. Cellulose, 2011, 18, 1563-1571.	2.4	33
133	Poly(vinylidene fluoride)/poly(acrylic acid)/calcium carbonate composite membranes via mineralization. Journal of Membrane Science, 2014, 454, 144-154.	4.1	33
134	Nanofilms directly formed on macro-porous substrates for molecular and ionic sieving. Journal of Materials Chemistry A, 2018, 6, 2908-2913.	5.2	33
135	Nanofibrous Sugar Sticks Electrospun from Glycopolymers for Protein Separation via Molecular Recognition. Macromolecular Rapid Communications, 2006, 27, 1942-1948.	2.0	32
136	Codeposition of catechol–polyethyleneimine followed by interfacial polymerization for nanofiltration membranes with enhanced stability. Journal of Applied Polymer Science, 2017, 134, 45422.	1.3	31
137	Novel thin film composite membranes supported by cellulose triacetate porous substrates for high-performance forward osmosis. Polymer, 2018, 153, 150-160.	1.8	31
138	Ceramic membrane with protein-resistant surface via dopamine/diglycolamine co-deposition. Separation and Purification Technology, 2020, 234, 116135.	3.9	31
139	Lysozyme Membranes Promoted by Hydrophobic Substrates for Ultrafast and Precise Organic Solvent Nanofiltration. Nano Letters, 2020, 20, 8760-8767.	4.5	31
140	Capillary-driven blood separation and in-situ electrochemical detection based on 3D conductive gradient hollow fiber membrane. Biosensors and Bioelectronics, 2021, 171, 112722.	5.3	30
141	Surface Engineering of Microporous Polypropylene Membrane for Antifouling: A Mini-Review. Journal of Adhesion Science and Technology, 2011, 25, 245-260.	1.4	29
142	Polymer fibers with hierarchically porous structure: combination of high temperature electrospinning and thermally induced phase separation. RSC Advances, 2013, 3, 13851.	1.7	29
143	Synthesis of polystyrene with cyclic, ionized and neutralized end groups and the self-assemblies templated by breath figures. Polymer Chemistry, 2014, 5, 3666-3672.	1.9	29
144	Effect of a spacer on phthalocyanine functionalized cellulose nanofiber mats for decolorizing reactive dye wastewater. Cellulose, 2012, 19, 1351-1359.	2.4	28

#	Article	IF	CITATIONS
145	Janus hollow fiber membranes with functionalized outer surfaces for continuous demulsification and separation of oil-in-water emulsions. Journal of Membrane Science, 2022, 648, 120388.	4.1	28
146	Effects of molecular weight distribution on the self-assembly of end-functionalized polystyrenes. Polymer Chemistry, 2017, 8, 4290-4298.	1.9	27
147	"Click Chemistry―as a Facile Approach to the Synthesis of Polyphosphazene Glycopolymers. Macromolecular Chemistry and Physics, 2011, 212, 272-277.	1.1	26
148	Polystyrene with hydrophobic end groups: synthesis, kinetics, interfacial activity, and self-assemblies templated by breath figures. Polymer Chemistry, 2014, 5, 4311-4320.	1.9	26
149	Utilization of a biphasic oil/aqueous cellulose nanofiber membrane bioreactor with immobilized lipase for continuous hydrolysis of olive oil. Cellulose, 2014, 21, 407-416.	2.4	25
150	Effects of quaternization on the morphological stability and antibacterial activity of electrospun poly(DMAEMA-co-AMA) nanofibers. Colloids and Surfaces B: Biointerfaces, 2015, 133, 148-155.	2.5	25
151	Poly(vinylidene fluoride) separators with dual-asymmetric structure for high-performance lithium ion batteries. Chinese Journal of Polymer Science (English Edition), 2016, 34, 1423-1435.	2.0	25
152	One-pot mussel-inspiration and silication: A platform for constructing oil-repellent surfaces toward crude oil/water separation. Journal of Membrane Science, 2020, 601, 117915.	4.1	25
153	Loose nanofiltration membranes with assembled antifouling surfaces of organophosphonic acid/Fe(III) for managing textile dyeing effluents. Journal of Membrane Science, 2021, 640, 119821.	4.1	25
154	Honeycomb-patterned films of polystyrene/poly(ethylene glycol): preparation, surface aggregation and protein adsorption. Science in China Series B: Chemistry, 2009, 52, 969-974.	0.8	24
155	Preparation and characterization of cellulose triacetate membranes via thermally induced phase separation. Journal of Applied Polymer Science, 2017, 134, .	1.3	24
156	Grain Boundaries of Self-Assembled Porous Polymer Films for Unclonable Anti-Counterfeiting. ACS Applied Polymer Materials, 2019, 1, 47-53.	2.0	24
157	MOF-enzyme hybrid nanosystem decorated 3D hollow fiber membranes for in-situ blood separation and biosensing array. Biosensors and Bioelectronics, 2021, 190, 113413.	5.3	24
158	End-functionalized polymers by controlled/living radical polymerizations: synthesis and applications. Polymer Chemistry, 2022, 13, 300-358.	1.9	24
159	Linear and combâ€like acrylonitrile/ <i>N</i> â€isopropylacrylamide copolymers synthesized by the combination of RAFT polymerization and ATRP. Journal of Polymer Science Part A, 2009, 47, 92-102.	2.5	23
160	Preparation of Polyphosphazene Hydrogels for Enzyme Immobilization. Molecules, 2014, 19, 9850-9863.	1.7	23
161	Sandwich-structured composite separators with an anisotropic pore architecture for highly safe Li-ion batteries. Composites Communications, 2018, 8, 46-51.	3.3	23
162	Ultrafast formation of pyrogallol/polyethyleneimine nanofilms for aqueous and organic nanofiltration. Journal of Membrane Science, 2019, 570-571, 270-277.	4.1	23

#	Article	IF	CITATIONS
163	Surface and Interface Engineering of Polymer Membranes: Where We Are and Where to Go. Macromolecules, 2022, 55, 3363-3383.	2.2	23
164	Hydrophilic modification of PVDF microfiltration membranes by adsorption of facial amphiphile cholic acid. Colloids and Surfaces B: Biointerfaces, 2014, 123, 809-813.	2.5	22
165	Polydopamine as a Catalyst for Thiol Coupling. ChemCatChem, 2015, 7, 3822-3825.	1.8	22
166	Polydopamine-assisted deposition of heparin for selective adsorption of low-density lipoprotein. RSC Advances, 2015, 5, 12922-12930.	1.7	22
167	Dual-Layer Nanofilms via Mussel-Inspiration and Silication for Non-Iridescent Structural Color Spectrum in Flexible Displays. ACS Applied Nano Materials, 2019, 2, 4556-4566.	2.4	22
168	Ultra-thin graphene oxide films via contra-diffusion method: Fast fabrication for ion rejection. Journal of Membrane Science, 2020, 595, 117586.	4.1	22
169	Preparation and Performance Assessment of Low-Pressure Affinity Membranes Based on Functionalized, Electrospun Polyacrylates for Gold Nanoparticle Filtration. ACS Applied Materials & Interfaces, 2021, 13, 15659-15667.	4.0	22
170	Multilayer adsorption of lectins on glycosylated microporous polypropylene membranes. Journal of Membrane Science, 2009, 335, 111-117.	4.1	21
171	Immobilization of horseradish peroxidase (HRP) on polyimide nanofibers blending with carbon nanotubes. Journal of Molecular Catalysis B: Enzymatic, 2014, 106, 56-62.	1.8	21
172	Musselâ€Inspired Coatings Directed and Accelerated by an Electric Field. Macromolecular Rapid Communications, 2016, 37, 1460-1465.	2.0	21
173	Self-Assembly of Patterned Porous Films from Cyclic Polystyrenes via the Breath Figure Method. Journal of Physical Chemistry C, 2018, 122, 3926-3933.	1.5	21
174	Bioinspired Selfâ€Assembling Materials for Modulating Enzyme Functions. Advanced Functional Materials, 2021, 31, 2104819.	7.8	21
175	Fabrication of glycosylated surfaces on microporous polypropylene membranes for protein recognition and adsorption. Journal of Materials Chemistry, 2008, 18, 4663.	6.7	20
176	Immobilization of catalase on electrospun nanofibrous membranes modified with bovine serum albumin or collagen: Coupling site-dependent activity and protein-dependent stability. Soft Matter, 2009, 5, 4161.	1.2	20
177	Controllable glycosylation of polyphosphazene via radical thiol–yne click chemistry. Journal of Polymer Science Part A, 2012, 50, 3149-3157.	2.5	20
178	Nonlithographic Fabrication of Nanostructured Micropatterns via Breath Figures and Solution Growth. Journal of Physical Chemistry C, 2014, 118, 4403-4409.	1.5	20
179	Polymer Membranes with Vertically Oriented Pores Constructed by 2D Freezing at Ambient Temperature. ACS Applied Materials & Interfaces, 2016, 8, 14174-14181.	4.0	20
180	Understanding the Oxidative Stability of Antifouling Polymer Brushes. Langmuir, 2017, 33, 7298-7304.	1.6	19

#	Article	IF	CITATIONS
181	Underwater superoleophobic coatings fabricated from tannic acid-decorated carbon nanotubes. RSC Advances, 2015, 5, 16112-16115.	1.7	18
182	Biomimetic gill-inspired membranes with direct-through micropores for water remediation by efficiently removing microplastic particles. Chemical Engineering Journal, 2022, 434, 134758.	6.6	18
183	Formation of Metal–Phytic Acid Surface Coatings via Oxidation-Mediated Coordination Assembly. ACS Applied Polymer Materials, 2022, 4, 546-555.	2.0	18
184	Nanofibrous mats with bird's nest patterns by electrospinning. Chinese Journal of Polymer Science (English Edition), 2012, 30, 130-137.	2.0	17
185	Synthesis of core cross-linked star polystyrene with functional end groups and self-assemblies templated by breath figures. Polymer Chemistry, 2014, 5, 5175-5182.	1.9	17
186	UV-assisted treatment on hydrophobic acrylic IOLs anterior surface with methacryloyloxyethyl phosphorylcholine: Reducing inflammation and maintaining low posterior capsular opacification properties. Materials Science and Engineering C, 2017, 75, 1289-1298.	3.8	17
187	Thermosensitive Microgels Containing AlEgens: Enhanced Luminescence and Distinctive Photochromism for Dynamic Anticounterfeiting. ACS Applied Materials & Interfaces, 2022, 14, 17794-17805.	4.0	17
188	Copolymerization of propene with 1-alkenes using a MgCl2/TiCl4 catalyst. Die Makromolekulare Chemie, 1991, 192, 1835-1840.	1.1	16
189	Carbohydrate decoration of microporous polypropylene membranes for lectin affinity adsorption: comparison of mono- and disaccharides. Colloids and Surfaces B: Biointerfaces, 2011, 85, 19-25.	2.5	16
190	Glycosylation of the polypropylene membrane surface via thiol–yne click chemistry for lectin adsorption. Colloids and Surfaces B: Biointerfaces, 2013, 110, 105-112.	2.5	16
191	Fabrication of Transferable Perforated Isoporous Membranes on Versatile Solid Substrates via the Breath Figure Method. Advanced Materials Interfaces, 2015, 2, 1500285.	1.9	16
192	Janus polymer membranes prepared by single-side polydopamine deposition for dye adsorption and fine bubble aeration. Materials Chemistry Frontiers, 2019, 3, 2102-2109.	3.2	16
193	Thermoresponsive Diblock Copolymer Films with a Linear Shrinkage Behavior and Its Potential Application in Temperature Sensors. Langmuir, 2020, 36, 742-753.	1.6	16
194	Osmotic pressure as driving force for recovering ionic liquids from aqueous solutions. Journal of Membrane Science, 2020, 599, 117835.	4.1	16
195	Ethylene/propene copolymerization with a TiCl3 catalyst: Effects of prepolymerization. Die Makromolekulare Chemie Rapid Communications, 1990, 11, 79-81.	1.1	15
196	Macroporous, protein-containing films cast from water-in-oil emulsions featuring a block-copolymer. Soft Matter, 2011, 7, 4221.	1.2	15
197	A versatile approach to the synthesis of polyphosphazene derivatives via the thiol–ene reaction. Journal of Polymer Science Part A, 2012, 50, 5170-5176.	2.5	15
198	Surface functionalization of cross-linked polystyrene microspheres via thiol–ene "click―reaction and assembly in honeycomb films for lectin recognition. Journal of Materials Research, 2013, 28, 642-650.	1.2	15

#	Article	IF	CITATIONS
199	Photothermal Spongy Film for Enhanced Surface-Mediated Transfection to Primary Cells. ACS Applied Bio Materials, 2019, 2, 2676-2684.	2.3	15
200	Hybrid Janus Membrane with Dual-Asymmetry Integration of Wettability and Conductivity for Ultra-Low-Volume Sweat Sensing. ACS Applied Materials & Interfaces, 2022, 14, 9644-9654.	4.0	15
201	Copolymerization of propene with highâ€lâ€olefin using a MgCl ₂ /TiCl ₄ catalyst. Makromolekulare Chemie Macromolecular Symposia, 1992, 63, 233-243.	0.6	14
202	Polysulfone membranes via thermally induced phase separation. Chinese Journal of Polymer Science (English Edition), 2017, 35, 846-856.	2.0	14
203	Polypropylene Separators with Robust Mussel-inspired Coatings for High Lithium-ion Battery Performances. Chinese Journal of Polymer Science (English Edition), 2019, 37, 1015-1022.	2.0	14
204	Alginate Hydrogel Assisted Controllable Interfacial Polymerization for High-Performance Nanofiltration Membranes. Membranes, 2021, 11, 435.	1.4	14
205	Modular assembly of enzyme loaded nanoparticles in 3D hollow fiber electrode for electrochemical sensing. Chemical Engineering Journal, 2021, 421, 129721.	6.6	14
206	Multiple Liquid Manipulations on Patterned Surfaces with Tunable Adhesive Property. Advanced Materials Interfaces, 2017, 4, 1700490.	1.9	14
207	Janus Metal–Organic Frameworks/Wood Aerogel Composites for Boosting Catalytic Performance by Le Châtelier's Principle. ACS Applied Materials & Interfaces, 2021, 13, 51039-51047.	4.0	14
208	Construction of Glycosylated Surfaces for Poly(propylene) Beads with a Photoinduced Grafting/Chemical Reaction Sequence. Macromolecular Rapid Communications, 2007, 28, 2325-2331.	2.0	13
209	Centimeter-scale giant spherulites in mixtures of polar polymers and crystallizable diluents: Morphology, structure, formation and application. RSC Advances, 2013, 3, 17105.	1.7	13
210	Janusâ€Membranen: Erforschung ihrer DualitÃæfür hochentwickelte Stofftrennungen. Angewandte Chemie, 2016, 128, 13596-13605.	1.6	13
211	Surface modification of self-assembled isoporous polymer membranes for pressure-dependent high-resolution separation. Polymer Chemistry, 2019, 10, 3201-3209.	1.9	13
212	Thermo-responsive stick-slip behavior of advancing water contact angle on the surfaces of poly(N-isopropylacrylamide)-grafted polypropylene membranes. Science China Chemistry, 2010, 53, 183-189.	4.2	12
213	Biomineralized polypropylene/CaCO ₃ composite nonwoven meshes for oil/water separation. Journal of Applied Polymer Science, 2014, 131, .	1.3	12
214	Vertically Oriented Microporous Membranes Prepared by Bidirectional Freezing. Chinese Journal of Polymer Science (English Edition), 2018, 36, 880-887.	2.0	12
215	Water Purification/Harvesting: Harnessing Solarâ€Driven Photothermal Effect toward the Water–Energy Nexus (Adv. Sci. 18/2019). Advanced Science, 2019, 6, 1970111.	5.6	12
216	Polyamide Nanofiltration Membranes Incorporated with Cellulose Nanocrystals for Enhanced Water Flux and Chlorine Resistance. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	12

#	Article	IF	CITATIONS
217	Surface Coatings via the Assembly of Metal–Monophenolic Networks. Langmuir, 2021, 37, 3721-3730.	1.6	12
218	Photoconductivity of Copolyimide Films Containing Tetraphenylporphyrin and Carbazole Moieties. Chemistry of Materials, 1998, 10, 1350-1354.	3.2	11
219	Glycosylation of Polyphosphazene Nanofibrous Membrane by Click Chemistry for Protein Recognition. Macromolecular Chemistry and Physics, 2013, 214, 1852-1858.	1.1	11
220	Kinetics-bolstered catalytic study of a high performance lipase-immobilized nanofiber membrane bioreactor. RSC Advances, 2014, 4, 6151.	1.7	11
221	Cross-linked perforated honeycomb membranes with improved mechanical and chemical properties. Materials Chemistry Frontiers, 2017, 1, 1073-1078.	3.2	11
222	Concentrating water-soluble ionic liquids from aqueous solutions: Osmotic distillation with hydrophobic membranes. Journal of Membrane Science, 2020, 608, 118222.	4.1	11
223	Polyamideâ€based membranes consisting of nanocomposite interlayers for high performance nanofiltration. Journal of Applied Polymer Science, 2021, 138, 49940.	1.3	11
224	Visualizing and monitoring interfacial polymerization by aggregation-induced emission. Polymer Chemistry, 2021, 12, 4332-4336.	1.9	11
225	Cobalt-porphyrin/dansyl piperazine complex coated filter paper for "turn on―fluorescence sensing of ammonia gas. RSC Advances, 2015, 5, 99361-99363.	1.7	10
226	Impact of Thermal History on the Kinetic Response of Thermoresponsive Poly(diethylene glycol) Tj ETQq0 0 0 rgBT Films Investigated by In Situ Neutron Reflectivity. Langmuir, 2020, 36, 6228-6237.	/Overloc 1.6	k 10 Tf 50 38 10
227	Interfacial Polymerization at the Alkane/Ionic Liquid Interface. Angewandte Chemie, 2021, 133, 14757-14764.	1.6	10
228	Surface and Interface Engineering for Advanced Nanofiltration Membranes. Chinese Journal of Polymer Science (English Edition), 2022, 40, 124-137.	2.0	10
229	Surface glycosylation of polymeric membranes. Science in China Series B: Chemistry, 2008, 51, 901-910.	0.8	9
230	Surface Metallization of Porous Polymer Materials for Multifunctional Applications. Langmuir, 2020, 36, 1454-1461.	1.6	9
231	Cu2+/alginate nanofiltration membranes fabricated at the aqueous contra-diffusion "interface―for salt/dye rejection. Desalination, 2022, 535, 115806.	4.0	9
232	Polypropylene non-woven meshes with conformal glycosylated layer for lectin affinity adsorption: The effect of side chain length. Colloids and Surfaces B: Biointerfaces, 2014, 115, 340-348.	2.5	8
233	Fabrication of "Spongy Skin―on Diversified Materials Based on Surface Swelling Non-Solvent-Induced Phase Separation. ACS Applied Materials & Interfaces, 2021, 13, 57000-57008.	4.0	7
234	<pre><scp>Magneticâ€controllable</scp> Janus fibrous membranes with <scp>windâ€resistant</scp> floatability for <scp>airflowâ€enhanced</scp> solar evaporation. Journal of Polymer Science, 2022, 60, 2309-2317.</pre>	2.0	7

#	Article	IF	CITATIONS
235	Ag Nanoparticle-Enabled Electroless Deposition of Ni on Mine-Formaldehyde Sponges for Oil–Water Separation, Piezoresistive Sensing, and Electromagnetic Shielding. ACS Applied Nano Materials, 2022, 5, 4204-4213.	2.4	7
236	Surface modification of acrylate intraocular lenses with dielectric barrier discharge plasma at atmospheric pressure. Science in China Series B: Chemistry, 2009, 52, 1235-1243.	0.8	6
237	Glycosylated membranes: A promising biomimetic material. Journal of Applied Polymer Science, 2014, 131, .	1.3	6
238	Membranes: Dopamine: Just the Right Medicine for Membranes (Adv. Funct. Mater. 8/2018). Advanced Functional Materials, 2018, 28, 1870052.	7.8	6
239	Janus membranes for fast-mass-transfer separation of viscous ionic liquids from emulsions. Journal of Membrane Science, 2021, 637, 119643.	4.1	6
240	Virtually Wall-Less Tubular Sponges as Compartmentalized Reaction Containers. Research, 2019, 2019, 4152536.	2.8	6
241	Title is missing!. Die Makromolekulare Chemie, 1988, 189, 1133-1140.	1.1	5
242	Synthesis of Polyphosphazene Derivatives via Thiolâ€ene Click Reactions in an Aqueous Medium. Macromolecular Chemistry and Physics, 2015, 216, 671-677.	1.1	5
243	Understanding the CO ₂ sorption mechanisms of the MgOâ€doped Naâ€based sorbent at low temperatures. , 2019, 9, 672-686.		5
244	Engineered Coatings via the Assembly of Aminoâ€Quinone Networks. Angewandte Chemie, 2021, 133, 2376-2384.	1.6	5
245	Intraocular Lens with Mussel-Inspired Coating for Preventing Posterior Capsule Opacification via Photothermal Effect. ACS Applied Bio Materials, 2021, 4, 3579-3586.	2.3	5
246	Simulation of electrical field for the formation mechanism of Bird's Nest patterned structures by electrospinning. Chinese Journal of Polymer Science (English Edition), 2013, 31, 514-520.	2.0	4
247	Janus membranes with asymmetric cellular adhesion behaviors for regenerating eardrum perforation. Journal of Materials Chemistry B, 2022, 10, 2719-2727.	2.9	4
248	Effect of polar groups of polystyrenes on the <scp>selfâ€assembly</scp> of breath figure arrays. Journal of Polymer Science, 2022, 60, 2371-2382.	2.0	4
249	Endogenous Ionicâ€Liquidâ€Infused Coatings by Phase Separation for Antiâ€Icing and Antiâ€Bacterial Applications. Advanced Materials Interfaces, 2022, 9, .	1.9	4
250	Graft polymerization of 2-hydroxyethyl methacrylate via ATRP with poly(acrylonitrile-co-p-chloromethyl styrene) as a macroinitiator. Science China Chemistry, 2012, 55, 1125-1133.	4.2	3
251	Dielectric property of polyimide/barium titanate composites and its influence factors (II). Frontiers of Chemical Engineering in China, 2008, 2, 417-421.	0.6	2
252	Less-Ordered Hydration Shell around Poly(<i>N</i> , <i>N</i> -diethylacrylamide) Is Insensitive to the Clouding Transition. Journal of Physical Chemistry B, 2021, 125, 12104-12109.	1.2	2

#	Article	IF	CITATIONS
253	Transparent and fluorescent breath figure arrays prepared from end-functionalized copolymers. Polymer, 2022, 254, 125079.	1.8	2
254	Biogenic Polyelectrolyte Multilayers on Poly(Lâ€lactide) Films for Control of Osteoblast Adhesion. Macromolecular Symposia, 2010, 294, 133-143.	0.4	1
255	Conformal and non-conformal surface modification of honeycomb-patterned porous films via tunable Cassie–Wenzel transition. RSC Advances, 2016, 6, 52131-52136.	1.7	1
256	Sustainable Electrospun Affinity Membranes for Water Remediation by Removing Metal and Metal Oxide Nanoparticles. ACS Applied Polymer Materials, 2021, 3, 5739-5748.	2.0	1
257	Surface characteristics of poly(γâ€alkyl α lâ€glutamate)s with different alkyl groups. Journal of Applied Polymer Science, 2011, 120, 1679-1684.	1.3	0
258	Hall of Fame Article: Asymmetric Surface Engineering for Janus Membranes (Adv. Mater. Interfaces) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 50

259	Mineralized Poly (Vinylidene Fluoride)-Based Ultrafiltration Membranes with Sodium Carbonate and Ammonium Carbonate as Carbonate Source. , 2017, , .
-----	--