Takayoshi Suzuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3478224/publications.pdf

Version: 2024-02-01

94 papers

2,820 citations

28 h-index 206112 48 g-index

94 all docs 94 docs citations

94 times ranked 1887 citing authors

#	Article	IF	CITATIONS
1	Evaluation of the rodent micronucleus assay in the screening of IARC carcinogens (Groups 1, 2A and) Tj ETQq1	1 0.784314 1.7	rgBT/Over
2	Recent advances in the protocols of transgenic mouse mutation assays. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2000, 455, 191-215.	1.0	198
3	In vivo transgenic mutation assays. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2003, 540, 141-151.	1.7	135
4	Evaluation of the rat micronucleus test with bone marrow and peripheral blood: Summary of the 9th collaborative study by CSGMT/JEMS·MMS. , 1998, 32, 84-100.		123
5	Evaluation of the micronucleus test using a Chinese hamster cell line as an alternative to the conventional in vitro chromosomal aberration test. Mutation Research - Environmental Mutagenesis and Related Subjects Including Methodology, 1992, 272, 223-236.	0.4	118
6	Continuous mild heat stress induces differentiation of mammalian myoblasts, shifting fiber type from fast to slow. American Journal of Physiology - Cell Physiology, 2010, 298, C140-C148.	4.6	83
7	Mutagenicity of aristolochic acid in the lambda/lacZ transgenic mouse (Mutaâ,,¢Mouse). Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2002, 515, 63-72.	1.7	75
8	Genotoxicity of microcystin-LR in human lymphoblastoid TK6 cells. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2004, 557, 1-6.	1.7	74
9	The concomitant detection of gene mutation and micronucleus induction by mitomycin C in vivo using lacZ transgenic mice. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1993, 285, 219-224.	1.0	68
10	Evaluation of liver and peripheral blood micronucleus assays with 9 chemicals using young rats. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2005, 583, 133-145.	1.7	67
11	Agreement of mutational characteristics of heterocyclic amines in lacl of the Big Blue mouse with those in tumor related genes in rodents. Carcinogenesis, 1997, 18, 745-748.	2.8	65
12	The micronucleus assay using peripheral blood reticulocytes from mitomycin C- and cyclophosphamide-treated rats. Mutation Research - Genetic Toxicology Testing and Biomonitoring of Environmental Or Occupational Exposure, 1992, 278, 209-213.	1.2	64
13	DNA adducts and mutagenic specificity of the ubiquitous environmental pollutant 3-nitrobenzanthrone in Muta Mouse. Environmental and Molecular Mutagenesis, 2004, 43, 186-195.	2.2	63
14	System issues: Organ variation in the mutagenicity of dimethylnitrosamine in Big Blue® mice. Environmental and Molecular Mutagenesis, 1996, 28, 348-353.	2.2	55
15	Organ variation in the mutagenicity of MelQ in Big Blue® lacI transgenic mice. Mutation Research - Genetic Toxicology Testing and Biomonitoring of Environmental Or Occupational Exposure, 1996, 369, 45-49.	1.2	50
16	Flow Cytometric Analysis of Micronuclei in Peripheral Blood Reticulocytes: I. Intra- and Interlaboratory Comparison with Microscopic Scoring. Toxicological Sciences, 2006, 94, 83-91.	3.1	50
17	Gene Expression Profiling of Human Mesenchymal Stem Cells for Identification of Novel Markers in Early- and Late-Stage Cell Culture. Journal of Biochemistry, 2008, 144, 399-408.	1.7	49
18	A comparative study of TK6 human lymphoblastoid and L5178Y mouse lymphoma cell lines in the in vitro micronucleus test. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 1995, 347, 105-115.	1.1	44

#	Article	IF	Citations
19	Target organ and time-course in the mutagenicity of five carcinogens in Mutaâ,,¢Mouse: a summary report of the second collaborative study of the transgenic mouse mutation assay by JEMS/MMS. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 1999, 444, 259-268.	1.7	43
20	Spontaneous mutant frequency of lacZ gene in spleen of transgenic mouse increases with age. Mutation Research - DNAging, 1995, 338, 183-188.	3.2	42
21	A comparison of the genotoxicity of ethylnitrosourea and ethyl methanesulfonate in lacZ transgenic mice (Mutaâ,,¢Mouse). Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 1997, 395, 75-82.	1.7	40
22	In vivo genotoxicity evaluation of dimethylarsinic acid in Mutaâ,, \$\phi\$Mouse. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2002, 513, 205-212.	1.7	40
23	Tissue-specific mutational spectra of 2-amino-3,4-dimethylimidazo[4,5-f]quinoline in the liver and bone marrow of lacl transgenic mice. Carcinogenesis, 1994, 15, 2805-2809.	2.8	37
24	Discrimination of genotoxic and non-genotoxic hepatocarcinogens by statistical analysis based on gene expression profiling in the mouse liver as determined by quantitative real-time PCR. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2012, 747, 164-175.	1.7	37
25	Initial experiences and future directions for transgenic mouse mutation assays. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1994, 307, 489-494.	1.0	36
26	Potassium bromate treatment predominantly causes large deletions, but not GC>TA transversion in human cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2007, 619, 113-123.	1.0	33
27	Dose-dependent alterations in gene expression in mouse liver induced by diethylnitrosamine and ethylnitrosourea and determined by quantitative real-time PCR. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2009, 673, 9-20.	1.7	32
28	Differential Gene Expression Induced by Two Genotoxic N-nitroso Carcinogens, Phenobarbital and Ethanol in Mouse Liver Examined with Oligonucleotide Microarray and Quantitative Real-time PCR. Genes and Environment, 2007, 29, 115-127.	2.1	31
29	A rapid method for detection of mutations in the lacl gene using PCR-single strand conformation polymorphism analysis: demonstration of its high sensitivity. Mutation Research - Environmental Mutagenesis and Related Subjects Including Methodology, 1995, 334, 283-292.	0.4	30
30	Sources of variability in data from a positive selection lacZ transgenic mouse mutation assay: An interlaboratory study. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 1997, 388, 249-289.	1.7	28
31	Carcinogenicity of quinoline, styrene, and styrene-7,8-oxide. Lancet Oncology, The, 2018, 19, 728-729.	10.7	28
32	In vivo mutagenesis by the hepatocarcinogen quinoline in the lacZ transgenic mouse: evidence for its in vivo genotoxicity. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 1998, 412, 161-166.	1.7	27
33	Micronucleated reticulocyte induction by ethylating agents in mice. Mutation Research - Environmental Mutagenesis and Related Subjects Including Methodology, 1992, 271, 29-37.	0.4	24
34	Antimutagenic structural modification of quinoline assessed by an in vivo mutagenesis assay using lacZ-transgenic mice. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 1998, 414, 165-169.	1.7	24
35	Procarbazine genotoxicity in the Mutaâ,,¢Mouse; strong clastogenicity and organ-specific induction of lacZ mutations. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 1999, 444, 269-281.	1.7	24
36	Toxicoproteomic analysis of human lung epithelial cells exposed to steel industry ambient particulate matter (PM) reveals possible mechanism of PM related carcinogenesis. Environmental Pollution, 2018, 239, 483-492.	7.5	24

#	Article	IF	Citations
37	In vivo genotoxicity of 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline in lacI transgenic (Big Blue®) mice. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2000, 468, 19-25.	1.7	23
38	Isolation of micronuclei from mouse blood and fluorescence in situ hybridization with a mouse centromeric DNA probe. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1994, 307, 245-251.	1.0	22
39	Dinitropyrenes induce gene mutations in multiple organs of the lambda/lacZ transgenic mouse (Mutaâ,,¢ Mouse). Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2002, 515, 73-83.	1.7	21
40	Effect of 10-aza-substitution on benzo[a]pyrene mutagenicity in vivo and in vitro. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2002, 521, 187-200.	1.7	20
41	Differential gene expression profiling between genotoxic and non-genotoxic hepatocarcinogens in young rat liver determined by quantitative real-time PCR and principal component analysis. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2013, 751, 73-83.	1.7	20
42	Establishment of pancreatic microenvironment model of ER stress: Quercetin attenuates \hat{l}^2 -cell apoptosis by invoking nitric oxide-cGMP signaling in endothelial cells. Journal of Nutritional Biochemistry, 2018, 55, 142-156.	4.2	20
43	Deoxyribonucleic acid (DNA) damage induced by bleomycin-Fe(II) in vitro: Formation of 8-hydroxyguanine residues in DNA Chemical and Pharmaceutical Bulletin, 1989, 37, 1028-1030.	1.3	19
44	Hepatocarcinogen quinoline induces G:C to C:G transversions in the cII gene in the liver of lambda/lacZ transgenic mice (Mutaâ,,¢Mouse). Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2000, 456, 73-81.	1.0	19
45	Mutation spectrum of o-aminoazotoluene in the cll gene of lambda/lacZ transgenic mice (Mutaâ,,¢Mouse). Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2001, 491, 211-220.	1.7	19
46	Resveratrol increases CD68 ⁺ Kupffer cells colocalized with adipose differentiationâ€related protein and ameliorates highâ€fatâ€dietâ€induced fatty liver in mice. Molecular Nutrition and Food Research, 2015, 59, 1155-1170.	3. 3	18
47	X-Ray- and Ultraviolet-Radiation-Induced Mutations in Mutaâ,,¢ Mouse. Radiation Research, 1997, 148, 123.	1.5	17
48	Ethyl nitrosourea and methyl methanesulfonate mutagenicity in sperm and testicular germ cells of lacZ transgenic mice (Mutaâ,,¢Mouse). Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 1997, 388, 155-163.	1.7	17
49	Specific mutational spectrum of dimethylnitrosamine in the lacI transgene of Big Blue® C57BL/6 mice. Mutagenesis, 1998, 13, 625-630.	2.6	17
50	DNA adduct level induced by 2-amino-3,4-dimethylimidazo[4,5-f]-quinoline in Big Blue TMmice does not correlate with mutagenicity. Mutagenesis, 1998, 13, 381-384.	2.6	16
51	Regional mutagenicity of heterocyclic amines in the intestine: mutation analysis of the cll gene in lambda/lacZ transgenic mice. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2003, 539, 99-108.	1.7	16
52	Chromosome painting analysis of spontaneous and methyl methanesulfonate-induced trifluorothymidine-resistant L5178Y cell colonies. Mutation Research - Genetic Toxicology Testing and Biomonitoring of Environmental Or Occupational Exposure, 1996, 370, 181-190.	1.2	15
53	Collaborative studies in toxicogenomics in rodent liver in JEMS·MMS; a useful application of principal component analysis on toxicogenomics. Genes and Environment, 2016, 38, 15.	2.1	15
54	Trans-4-hydroxy-2-nonenal, an aldehydic lipid peroxidation product, lacks genotoxicity in lacl transgenic mice. Cancer Letters, 2000, 148, 81-86.	7.2	14

#	Article	IF	CITATIONS
55	HX531, a retinoid X receptor antagonist, inhibited the 9-cis retinoic acid-induced binding with steroid receptor coactivator-1 as detected by surface plasmon resonance. Journal of Steroid Biochemistry and Molecular Biology, 2005, 94, 303-309.	2.5	14
56	Detection of genome-wide low-frequency mutations with Paired-End and Complementary Consensus Sequencing (PECC-Seq) revealed end-repair-derived artifacts as residual errors. Archives of Toxicology, 2020, 94, 3475-3485.	4.2	14
57	Prospects for safety testing: Initial consideration for use of transgenic mutation assays in a regulatory submission. , 1996, 28, 443-446.		12
58	Comparative study on organ-specificity of tumorigenicity, mutagenicity and cell proliferative activity induced by dimethylnitrosamine in Big Blue® mice. Cancer Letters, 1997, 117, 143-147.	7.2	12
59	Differential proteomic profiling identifies novel molecular targets of pterostilbene against experimental diabetes. Journal of Cellular Physiology, 2019, 234, 1996-2012.	4.1	12
60	CC to TT mutation in the mitochondrial DNA of normal skin: relationship to ultraviolet light exposure. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2000, 468, 35-43.	1.7	11
61	Identification of BC005512 as a DNA Damage Responsive Murine Endogenous Retrovirus of GLN Family Involved in Cell Growth Regulation. PLoS ONE, 2012, 7, e35010.	2.5	11
62	Influence of EGFR-activating mutations on sensitivity to tyrosine kinase inhibitors in a KRAS mutant non-small cell lung cancer cell line. PLoS ONE, 2020, 15, e0229712.	2.5	11
63	Preparation of the standard cell lines for reference mutations in cancer gene-panels by genome editing in HEK 293 T/17 cells. Genes and Environment, 2020, 42, 8.	2.1	11
64	Clastogenicity of Quinoline and Monofluorinated Quinolines in Chinese Hamster Lung Cells. Journal of Health Science, 2007, 53, 325-328.	0.9	10
65	In vivo mutagenicity of benzo[f]quinoline, benzo[h]quinoline, and 1,7-phenanthroline using the lacZ transgenic mice. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2004, 559, 83-95.	1.7	9
66	Degradation of Filamin Induces Contraction of Vascular Smooth Muscle Cells in Type-I Collagen Matrix Honeycombs. Cellular Physiology and Biochemistry, 2011, 27, 669-680.	1.6	9
67	Effect of Rosolic acid on endothelial dysfunction under ER stress in pancreatic microenvironment. Free Radical Research, 2021, 55, 887-902.	3.3	9
68	Micronucleus induction in mouse peripheral reticulocytes by 7,12-dimethylbenz[a]anthracene. Mutation Research - Genetic Toxicology Testing and Biomonitoring of Environmental Or Occupational Exposure, 1992, 278, 169-173.	1.2	8
69	Analysis by fluorescence in situ hybridization with a mouse gamma satellite DNA probe of isolated micronuclei induced in mice by two clastogens and two spindle poisons. Mutagenesis, 1995, 10, 513-516.	2.6	8
70	A New Role of Thrombopoietin Enhancing ex Vivo Expansion of Endothelial Precursor Cells Derived from AC133-positive Cells. Journal of Biological Chemistry, 2007, 282, 33507-33514.	3.4	8
71	Using RNA-Seq with 11 marker genes to evaluate 1,4-dioxane compared with typical genotoxic and non-genotoxic rat hepatocarcinogens. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2018, 834, 51-55.	1.7	8
72	Pharmacological Activation of Nrf2 by Rosolic Acid Attenuates Endoplasmic Reticulum Stress in Endothelial Cells. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-20.	4.0	8

#	Article	IF	CITATIONS
73	Temperature-dependence of cytotoxicity of several genotoxicants in chinese hamster V79 cells: Bleomycin, paraquat, and some N-alkyl-N-nitrosoureas. Biochemical and Biophysical Research Communications, 1987, 146, 67-72.	2.1	7
74	Metabolic activation of 10-aza-substituted benzo[a]pyrene by cytochrome P450 1A2 in human liver microsomes. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2004, 557, 159-165.	1.7	7
75	Nitrogen-substitution effect on in vivo mutagenicity of chrysene. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2005, 586, 1-17.	1.7	7
76	Clastogenicity of Quinoline Derivatives in the Liver Micronucleus Assay Using Rats and Mice. Journal of Health Science, 2007, 53, 470-474.	0.9	7
77	Mutagenic properties of dimethylaniline isomers in mice as evaluated by comet, micronucleus and transgenic mutation assays. Genes and Environment, 2018, 40, 18.	2.1	7
78	Time-course Comparison of Gene Expression Profiles Induced by the Genotoxic Hepatocarcinogen, Chrysene, in the Mouse Liver. Genes and Environment, 2014, 36, 54-64.	2.1	7
79	Combination effects of clastogens in the mouse peripheral blood micronucleus assay. Mutagenesis, 1995, 10, 31-36.	2.6	6
80	Evaluation of 12 mouse marker genes in rat toxicogenomics public data, Open TG-GATEs: Discrimination of genotoxic from non-genotoxic hepatocarcinogens. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2019, 838, 9-15.	1.7	6
81	Enhanced Cytotoxicity of Alkyl Viologens and N,N'-Diamino Analogs toward Cultured Murine Leukemia L1210 Cells under Vortex-Stirring with a High Molecular Weight Polyacrylic Acid Biological and Pharmaceutical Bulletin, 1997, 20, 168-170.	1.4	5
82	Microcystin-LR is not Mutagenic in vivo in the .LAMBDA./lacZ Transgenic Mouse (Muta Mouse). Genes and Environment, 2006, 28, 68-73.	2.1	5
83	Synergistic effect of glycerol on cytotoxicity of bleomycin in cultured Chinese hamster V79 cells Chemical and Pharmaceutical Bulletin, 1988, 36, 1611-1614.	1.3	4
84	New homozygous gpt delta transgenic rat strain improves an efficiency of the in vivo mutagenicity assay. Genes and Environment, 2021, 43, 25.	2.1	4
85	Unconscious Exposure to Radiation. Genes and Environment, 2013, 35, 63-68.	2.1	4
86	Granulocyte colony-stimulating factor promotes the translocation of protein kinase $\hat{Cl^1}$ in neutrophilic differentiation cells. Journal of Cellular Physiology, 2007, 211, 189-196.	4.1	3
87	Biomarker assay validation for clinical trials: a questionnaire survey to pharmaceutical companies in Japan. Bioanalysis, $2019, 11, 55-60$.	1.5	3
88	P XV.8 In vivo mutagenicity of 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MelQX) in lacI transgenic mice. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1997, 379, S147.	1.0	1
89	^ ^ldquo;Scientific Considerations Regarding Radiation Risk^ ^rdquo; JEMS Open Symposium 2012. Genes and Environment, 2013, 35, 57-62.	2.1	1
90	Hepatocarcinogen 4-methylquinoline induced G:C to C:G transversions in the cll gene in the liver of lambda/lacZ transgenic mice (Mutaâ,,¢Mouse). Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2020, 821, 111709.	1.0	1

#	Article	IF	CITATIONS
91	Using FFPE RNA-Seq with 12 marker genes to evaluate genotoxic and non-genotoxic rat hepatocarcinogens. Genes and Environment, 2020, 42, 15.	2.1	1

 $\tilde{a}f^{\tilde{a}}f^{\tilde{a}}\tilde{a}f^{\tilde{a}}\tilde{a},\tilde{a},\tilde{a},\tilde{a}f^{\tilde{a}}\tilde{a},\tilde{a}f^{\tilde$

93	Enhanced cytotoxicity in simultaneous and sequential drug-heat treatments of cultured Chinese hamster V79 cells Chemical and Pharmaceutical Bulletin, 1989, 37, 3058-3060.	1.3	O
94	Microarray analysis of responsible genes in increased growth rate in the subline of HL60 (HL60RG) cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2012, 731, 20-26.	1.0	0