Antonio Pifferi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3478070/publications.pdf Version: 2024-02-01

Δητονίο Ριέξερι

#	Article	IF	CITATIONS
1	Time domain functional NIRS imaging for human brain mapping. NeuroImage, 2014, 85, 28-50.	4.2	372
2	A solid tissue phantom for photon migration studies. Physics in Medicine and Biology, 1997, 42, 1971-1979.	3.0	249
3	Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy. Journal of Biomedical Optics, 2005, 10, 054004.	2.6	193
4	In vivo absorption and scattering spectroscopy of biological tissues. Photochemical and Photobiological Sciences, 2003, 2, 124.	2.9	188
5	Performance assessment of photon migration instruments: the MEDPHOT protocol. Applied Optics, 2005, 44, 2104.	2.1	185
6	New frontiers in time-domain diffuse optics, a review. Journal of Biomedical Optics, 2016, 21, 091310.	2.6	181
7	In vivooptical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy. Physics in Medicine and Biology, 2001, 46, 2227-2237.	3.0	169
8	Nondestructive quantification of chemical and physical properties of fruits by time-resolved reflectance spectroscopy in the wavelength range 650–1000 nm. Applied Optics, 2001, 40, 538.	2.1	146
9	Time-resolved and continuous wave NIR reflectance spectroscopy to predict soluble solids content and firmness of pear. Postharvest Biology and Technology, 2008, 47, 68-74.	6.0	145
10	Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography. Journal of Biomedical Optics, 2004, 9, 1137.	2.6	133
11	Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink. Biomedical Optics Express, 2014, 5, 2037.	2.9	133
12	Time-Resolved Reflectance at Null Source-Detector Separation: Improving Contrast and Resolution in Diffuse Optical Imaging. Physical Review Letters, 2005, 95, 078101.	7.8	122
13	Optical biopsy of bone tissue: a step toward the diagnosis of bone pathologies. Journal of Biomedical Optics, 2004, 9, 474.	2.6	120
14	Time-Resolved Diffuse Reflectance Using Small Source-Detector Separation and Fast Single-Photon Gating. Physical Review Letters, 2008, 100, 138101.	7.8	119
15	Clinical trial of time-resolved scanning optical mammography at 4 wavelengths between 683 and 975 nm. Journal of Biomedical Optics, 2004, 9, 464.	2.6	115
16	Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions. Physics in Medicine and Biology, 2005, 50, 2469-2488.	3.0	113
17	Experimental test of theoretical models for time-resolved reflectance. Medical Physics, 1996, 23, 1625-1633.	3.0	111
18	Multi-channel time-resolved system for functional near infrared spectroscopy. Optics Express, 2006, 14, 5418.	3.4	110

#	Article	IF	CITATIONS
19	Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast. Applied Physics Letters, 1999, 74, 874-876.	3.3	108
20	Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances. Journal of Biomedical Optics, 2004, 9, 1143.	2.6	106
21	Time-Resolved Reflectance Spectroscopy Applied to the Nondestructive Monitoring of the Internal Optical Properties in Apples. Applied Spectroscopy, 2001, 55, 1368-1374.	2.2	104
22	Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol. Journal of Biomedical Optics, 2014, 19, 086010.	2.6	101
23	Towards next-generation time-domain diffuse optics for extreme depth penetration and sensitivity. Biomedical Optics Express, 2015, 6, 1749.	2.9	100
24	Diffuse optical characterization of collagen absorption from 500 to 1700Ânm. Journal of Biomedical Optics, 2017, 22, 015006.	2.6	95
25	Accelerated Monte Carlo models to simulate fluorescence spectra from layered tissues. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2003, 20, 714.	1.5	94
26	Seven-wavelength time-resolved optical mammography extending beyond 1000 nm for breast collagen quantification. Optics Express, 2009, 17, 15932.	3.4	91
27	Determination of VIS- NIR absorption coefficients of mammalian fat, with time- and spatially resolved diffuse reflectance and transmission spectroscopy. , 2004, , SF4.		90
28	Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements. Optics Express, 2011, 19, 10735.	3.4	89
29	Characterization of female breast lesions from multi-wavelength time-resolved optical mammography. Physics in Medicine and Biology, 2005, 50, 2489-2502.	3.0	88
30	Performance assessment of time-domain optical brain imagers, part 2: nEUROPt protocol. Journal of Biomedical Optics, 2014, 19, 086012.	2.6	85
31	Fluorescence Lifetime Imaging of Experimental Tumors in Hematoporphyrin Derivativeâ€6ensitized Mice. Photochemistry and Photobiology, 1997, 66, 229-236.	2.5	84
32	There's plenty of light at the bottom: statistics of photon penetration depth in random media. Scientific Reports, 2016, 6, 27057.	3.3	82
33	Fast-Gated Single-Photon Avalanche Diode for Wide Dynamic Range Near Infrared Spectroscopy. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 1023-1030.	2.9	81
34	Use of a nonlinear perturbation approach for in vivo breast lesion characterization by multiwavelength time-resolved optical mammography. Optics Express, 2003, 11, 853.	3.4	79
35	Four-wavelength time-resolved optical mammography in the 680 980-nm range. Optics Letters, 2003, 28, 1138.	3.3	77
36	Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy. Journal of Biomedical Optics, 2010, 15, 060501.	2.6	76

#	Article	IF	CITATIONS
37	Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media. Review of Scientific Instruments, 2007, 78, 053103.	1.3	73
38	Bilateral prefrontal cortex oxygenation responses to a verbal fluency task: a multichannel time-resolved near-infrared topography study. Journal of Biomedical Optics, 2005, 10, 011012.	2.6	70
39	Absorption of collagen: effects on the estimate of breast composition and related diagnostic implications. Journal of Biomedical Optics, 2007, 12, 014021.	2.6	70
40	A model for the softening of nectarines based on sorting fruit at harvest by time-resolved reflectance spectroscopy. Postharvest Biology and Technology, 2006, 39, 223-232.	6.0	69
41	Fast silicon photomultiplier improves signal harvesting and reduces complexity in time-domain diffuse optics. Optics Express, 2015, 23, 13937.	3.4	68
42	Preliminary evaluation of two fluorescence imaging methods for the detection and the delineation of basal cell carcinomas of the skin. , 2000, 26, 76-82.		67
43	Nondestructive detection of brown heart in pears by time-resolved reflectance spectroscopy. Postharvest Biology and Technology, 2002, 25, 87-97.	6.0	66
44	Broadband (600–1350 nm) Time-Resolved Diffuse Optical Spectrometer for Clinical Use. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 406-414.	2.9	66
45	Diffuse optical spectroscopy of breast tissue extended to 1100â€,nm. Journal of Biomedical Optics, 2009, 14, 054030.	2.6	65
46	Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. Time-resolved method. Optics Express, 2007, 15, 6589.	3.4	64
47	Time-resolved reflectance: a systematic study for application to the optical characterization of tissues. IEEE Journal of Quantum Electronics, 1994, 30, 2421-2430.	1.9	63
48	Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near-infrared spectroscopy. Physics in Medicine and Biology, 2004, 49, 685-699.	3.0	63
49	Light propagation in dry and wet softwood. Optics Express, 2008, 16, 9895.	3.4	62
50	Real-time method for fitting time-resolved reflectance and transmittance measurements with a Monte Carlo model. Applied Optics, 1998, 37, 2774.	2.1	59
51	Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast. Photochemistry and Photobiology, 2000, 72, 383-91.	2.5	59
52	Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance. Applied Optics, 1999, 38, 3670.	2.1	56
53	Time-resolved single-photon detection module based on silicon photomultiplier: A novel building block for time-correlated measurement systems. Review of Scientific Instruments, 2016, 87, 073101.	1.3	56
54	Fluorescence lifetime imaging: an application to the detection of skin tumors. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5, 923-929.	2.9	55

#	Article	IF	CITATIONS
55	Portable, large-bandwidth time-resolved system for diffuse optical spectroscopy. Optics Express, 2007, 15, 14482.	3.4	52
56	Time-resolved diffuse optical tomography using fast-gated single-photon avalanche diodes. Biomedical Optics Express, 2013, 4, 1351.	2.9	52
57	Estimate of tissue composition in malignant and benign breast lesions by time-domain optical mammography. Biomedical Optics Express, 2014, 5, 3684.	2.9	50
58	Non-invasive optical estimate of tissue composition to differentiate malignant from benign breast lesions: A pilot study. Scientific Reports, 2017, 7, 40683.	3.3	50
59	Time domain diffuse correlation spectroscopy with a high coherence pulsed source: in vivo and phantom results. Biomedical Optics Express, 2017, 8, 5311.	2.9	50
60	Time-resolved imaging on a realistic tissue phantom: μs′ and μa images versus time-integrated images. Applied Optics, 1996, 35, 4533.	2.1	49
61	Time-Resolved Diffuse Optical Spectroscopy up to 1700 nm by Means of a Time-Gated InGaAs/InP Single-Photon Avalanche Diode. Applied Spectroscopy, 2012, 66, 944-950.	2.2	48
62	In-vivo multilaboratory investigation of the optical properties of the human head. Biomedical Optics Express, 2015, 6, 2609.	2.9	48
63	Spatial resolution in depth for time-resolved diffuse optical tomography using short source-detector separations. Biomedical Optics Express, 2015, 6, 1.	2.9	47
64	Nanosecond time-resolved emission spectroscopy from silicon implanted and annealed SiO2 layers. Applied Physics Letters, 1997, 70, 348-350.	3.3	46
65	Phantom validation and in vivo application of an inversion procedure for retrieving the optical properties of diffusive layered media from time-resolved reflectance measurements. Optics Letters, 2004, 29, 2037.	3.3	46
66	Non-contact time-resolved diffuse reflectance imaging at null source-detector separation. Optics Express, 2012, 20, 283.	3.4	46
67	Mechanically switchable solid inhomogeneous phantom for performance tests in diffuse imaging and spectroscopy. Journal of Biomedical Optics, 2015, 20, 121304.	2.6	45
68	Probe-hosted silicon photomultipliers for time-domain functional near-infrared spectroscopy: phantom and <i>in vivo</i> tests. Neurophotonics, 2016, 3, 045004.	3.3	45
69	In vivo time-resolved reflectance spectroscopy of the human forehead. Applied Optics, 2007, 46, 1717.	2.1	43
70	Brain and Muscle near Infrared Spectroscopy/Imaging Techniques. Journal of Near Infrared Spectroscopy, 2012, 20, 15-27.	1.5	43
71	BabyLux device: a diffuse optical system integrating diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy for the neuromonitoring of the premature newborn brain. Neurophotonics, 2019, 6, 1.	3.3	43
72	A Compact Two-Wavelength Time-Domain NIRS System Based on SiPM and Pulsed Diode Lasers. IEEE Photonics Journal, 2017, 9, 1-14.	2.0	42

#	Article	IF	CITATIONS
73	Time-resolved spectrophotometer for turbid media based on supercontinuum generation in a photonic crystal fiber. Optics Letters, 2004, 29, 2405.	3.3	41
74	Non-contact in vivo diffuse optical imaging using a time-gated scanning system. Biomedical Optics Express, 2013, 4, 2257.	2.9	41
75	Phantoms for diffuse optical imaging based on totally absorbing objects, part 1: basic concepts. Journal of Biomedical Optics, 2013, 18, 066014.	2.6	41
76	Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation. Journal of Biomedical Optics, 2014, 19, 076011.	2.6	40
77	Selection Models for the Internal Quality of Fruit, based on Time Domain Laser Reflectance Spectroscopy. Biosystems Engineering, 2004, 88, 313-323.	4.3	39
78	Breast Tissue Composition and Its Dependence on Demographic Risk Factors for Breast Cancer: Non-Invasive Assessment by Time Domain Diffuse Optical Spectroscopy. PLoS ONE, 2015, 10, e0128941.	2.5	39
79	SPECTROSCOPIC AND PHOTOACOUSTIC STUDIES OF HYPERICIN EMBEDDED IN LIPOSOMES AS A PHOTORECEPTOR MODEL*. Photochemistry and Photobiology, 1995, 62, 199-204.	2.5	38
80	Quantification by random walk of the optical parameters of nonlocalized abnormalities embedded within tissuelike phantoms. Optics Letters, 2000, 25, 951.	3.3	37
81	Time-Domain Broadband near Infrared Spectroscopy of the Female Breast: A Focused Review from Basic Principles to Future Perspectives. Journal of Near Infrared Spectroscopy, 2012, 20, 223-235.	1.5	37
82	Single-fiber diffuse optical time-of-flight spectroscopy. Optics Letters, 2012, 37, 2877.	3.3	36
83	Time-resolved reflectance spectroscopy nondestructively reveals structural changes in â€~Pink Lady®' apples during storage. Procedia Food Science, 2011, 1, 81-89.	0.6	35
84	Effects of time-gated detection in diffuse optical imaging at short source-detector separation. Journal Physics D: Applied Physics, 2015, 48, 045401.	2.8	35
85	Novel method for depth-resolved brain functional imaging by time-domain NIRS. Proceedings of SPIE, 2007, 6629, 59.	0.8	34
86	Determination of the optical properties of anisotropic biological media using an isotropic diffusion model. Journal of Biomedical Optics, 2007, 12, 014026.	2.6	34
87	Time-Resolved Optical Spectroscopy of Wood. Applied Spectroscopy, 2008, 62, 569-574.	2.2	34
88	Functional tomography using a time-gated ICCD camera. Biomedical Optics Express, 2011, 2, 705.	2.9	34
89	Tumor detection in mice by measurement of fluorescence decay time matrices. Optics Letters, 1995, 20, 2553.	3.3	33
90	Time-resolved optical imaging through turbid media using a fast data acquisition system based on a gated CCD camera. Journal Physics D: Applied Physics, 2003, 36, 1675-1681.	2.8	33

#	Article	IF	CITATIONS
91	Optical characterization of porcine tissues from various organs in the 650–1100â€nm range using time-domain diffuse spectroscopy. Biomedical Optics Express, 2020, 11, 1697.	2.9	33
92	Diffuse Optical Techniques Applied to Wood Characterisation. Journal of Near Infrared Spectroscopy, 2013, 21, 259-268.	1.5	32
93	DETECTION OF INTERNAL QUALITY IN KIWI WITH TIME-DOMAIN DIFFUSE REFLECTANCE SPECTROSCOPY. Applied Engineering in Agriculture, 2004, 20, 223-230.	0.7	31
94	Optical identification of subjects at high risk for developing breast cancer. Journal of Biomedical Optics, 2013, 18, 060507.	2.6	31
95	Solid phantom recipe for diffuse optics in biophotonics applications: a step towards anatomically correct 3D tissue phantoms. Biomedical Optics Express, 2019, 10, 2090.	2.9	31
96	Wearable and wireless time-domain near-infrared spectroscopy system for brain and muscle hemodynamic monitoring. Biomedical Optics Express, 2020, 11, 5934.	2.9	31
97	Frequency offset Raman spectroscopy (FORS) for depth probing of diffusive media. Optics Express, 2017, 25, 4585.	3.4	30
98	Liquid phantoms for near-infrared and diffuse correlation spectroscopies with tunable optical and dynamic properties. Biomedical Optics Express, 2018, 9, 2068.	2.9	30
99	Imaging with diffusing light: an experimental study of the effect of background optical properties. Applied Optics, 1998, 37, 3564.	2.1	29
100	Time-resolved DNA-microarray reading by an intensified CCD for ultimate sensitivity. Optics Letters, 2000, 25, 1648.	3.3	29
101	Liquid phantom for investigating light propagation through layered diffusive media. Optics Express, 2004, 12, 2102.	3.4	29
102	Miniaturized pulsed laser source for time-domain diffuse optics routes to wearable devices. Journal of Biomedical Optics, 2017, 22, 1.	2.6	29
103	Imaging of optical inhomogeneities in highly diffusive media: Discrimination between scattering and absorption contributions. Applied Physics Letters, 1996, 69, 4162-4164.	3.3	28
104	Reconstruction of absorber concentrations in a two-layer structure by use of multidistance time-resolved reflectance spectroscopy. Optics Letters, 2001, 26, 1963.	3.3	28
105	Spectrally Resolved Single-Photon Timing of Silicon Photomultipliers for Time-Domain Diffuse Spectroscopy. IEEE Photonics Journal, 2015, 7, 1-12.	2.0	28
106	Do shorter wavelengths improve contrast in optical mammography?. Physics in Medicine and Biology, 2004, 49, 1203-1215.	3.0	27
107	Afterpulse-like noise limits dynamic range in time-gated applications of thin-junction silicon silicon single-photon avalanche diode. Applied Physics Letters, 2012, 100, 241111.	3.3	27
108	Effects of the Menstrual Cycle on the Red and Near-infrared Optical Properties of the Human Breast¶. Photochemistry and Photobiology, 2000, 72, 383.	2.5	26

#	Article	IF	CITATIONS
109	MEALINESS DETECTION IN APPLES USING TIME RESOLVED REFLECTANCE SPECTROSCOPY. Journal of Texture Studies, 2005, 36, 439-458.	2.5	26
110	Time-domain diffuse optical tomography using silicon photomultipliers: feasibility study. Journal of Biomedical Optics, 2016, 21, 116002.	2.6	25
111	The antitumour activity of alkylating agents is not correlated with the levels of glutathione, glutathione transferase and O6-alkylguanine-DNA-alkyltransferase of human tumour xenografts. European Journal of Cancer, 1998, 34, 1749-1755.	2.8	23
112	Effects of photodynamic therapy on the absorption properties of disulphonated aluminum phthalocyanine in tumor-bearing mice. Journal of Photochemistry and Photobiology B: Biology, 2001, 60, 73-78.	3.8	23
113	Experimental test of a perturbation model for time-resolved imaging in diffusive media. Applied Optics, 2003, 42, 3145.	2.1	23
114	Bandpass Effects in Time-Resolved Diffuse Spectroscopy. Applied Spectroscopy, 2009, 63, 48-56.	2.2	23
115	Broadband (550–1350 nm) diffuse optical characterization of thyroid chromophores. Scientific Reports, 2018, 8, 10015.	3.3	23
116	In Vivo, Non-Invasive Characterization of Human Bone by Hybrid Broadband (600-1200 nm) Diffuse Optical and Correlation Spectroscopies. PLoS ONE, 2016, 11, e0168426.	2.5	23
117	Effects of the Menstrual Cycle on the Red and Near-infrared Optical Properties of the Human Breast ¶. Photochemistry and Photobiology, 2000, 72, 383-391.	2.5	22
118	In vivo absorption spectroscopy of tumor sensitizers with femtosecond white light. Applied Optics, 2005, 44, 2213.	2.1	22
119	Dynamic time-resolved diffuse spectroscopy based on supercontinuum light pulses. Applied Optics, 2005, 44, 4684.	2.1	22
120	Time-resolved diffuse optical spectroscopy of small tissue samples. Optics Express, 2007, 15, 3301.	3.4	22
121	Heuristic Green's function of the time dependent radiative transfer equation for a semi-infinite medium. Optics Express, 2007, 15, 18168.	3.4	22
122	Comparison of cell-cycle phase perturbations induced by the DNA-minor-groove alkylator tallimustine and by melphalan in the SW626 cell line. International Journal of Cancer, 1995, 62, 170-175.	5.1	21
123	Large-Area, Fast-Gated Digital SiPM With Integrated TDC for Portable and Wearable Time-Domain NIRS. IEEE Journal of Solid-State Circuits, 2020, 55, 3097-3111.	5.4	21
124	ABSORPTION SPECTRUM OF HEMATOPORPHYRIN DERIVATIVE <i>in vivo</i> IN A MURINE TUMOR MODEL. Photochemistry and Photobiology, 1994, 60, 582-585.	2.5	20
125	Diffuse optics using a dual window fast-gated counter. Applied Optics, 2014, 53, 7394.	2.1	20
126	Characterization of a time-resolved non-contact scanning diffuse optical imaging system exploiting fast-gated single-photon avalanche diode detection. Review of Scientific Instruments, 2016, 87, 035118.	1.3	20

#	Article	IF	CITATIONS
127	High throughput detection chain for time domain optical mammography. Biomedical Optics Express, 2018, 9, 755.	2.9	20
128	Non-invasive investigation of adipose tissue by time domain diffuse optical spectroscopy. Biomedical Optics Express, 2020, 11, 2779.	2.9	20
129	Criteria for the design of tissue-mimicking phantoms for the standardization of biophotonic instrumentation. Nature Biomedical Engineering, 2022, 6, 541-558.	22.5	20
130	In vivo absorption spectrum of disulphonated aluminium phthalocyanine in a murine tumour model. Journal of Photochemistry and Photobiology B: Biology, 1996, 34, 229-235.	3.8	19
131	Multiple-view diffuse optical tomography system based on time-domain compressive measurements. Optics Letters, 2017, 42, 2822.	3.3	19
132	Towards the use of bioresorbable fibers in timeâ€domain diffuse optics. Journal of Biophotonics, 2018, 11, e201600275.	2.3	19
133	Instrumental, optical and geometrical parameters affecting time-gated diffuse optical measurements: a systematic study. Biomedical Optics Express, 2018, 9, 5524.	2.9	19
134	Fluorescence Imaging During Photodynamic Therapy of Experimental Tumors in Mice Sensitized with Disulfonated Aluminum Phthalocyanine¶. Photochemistry and Photobiology, 2000, 72, 690.	2.5	19
135	Time-gated imaging in radiology: theoretical and experimental studies. IEEE Journal of Selected Topics in Quantum Electronics, 1996, 2, 1041-1048.	2.9	18
136	Quantification in time-domain diffuse optical tomography using Mellin-Laplace transforms. Biomedical Optics Express, 2016, 7, 4346.	2.9	17
137	Time-Gated Single-Photon Detection in Time-Domain Diffuse Optics: A Review. Applied Sciences (Switzerland), 2020, 10, 1101.	2.5	17
138	Absorption and scattering perturbations in homogeneous and layered diffusive media probed by time-resolved reflectance at null source-detector separation. Physical Review E, 2006, 74, 021919.	2.1	16
139	Light diffusion in quenched disorder: Role of step correlations. Physical Review E, 2014, 89, 022141.	2.1	16
140	Time-Domain Functional Diffuse Optical Tomography System Based on Fiber-Free Silicon Photomultipliers. Applied Sciences (Switzerland), 2017, 7, 1235.	2.5	16
141	In vivo time-gated diffuse correlation spectroscopy at quasi-null source-detector separation. Optics Letters, 2018, 43, 2450.	3.3	16
142	The SiPM revolution in time-domain diffuse optics. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 978, 164411.	1.6	16
143	Intracellular glutathione heterogeneity in L1210 murine leukemia sublines made resistant to dna-interacting anti-neoplastic agents. International Journal of Cancer, 1993, 54, 435-442.	5.1	15
144	Artificial models of biological photoreceptors: effect of quenchers on the fluorescence properties of hypericin embedded in liposomes. Journal of Photochemistry and Photobiology B: Biology, 1997, 38, 245-252.	3.8	15

#	Article	IF	CITATIONS
145	Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media. Review of Scientific Instruments, 2008, 79, 013103.	1.3	15
146	Nondestructive optical detection of monomer uptake in wood polymer composites. Optics Letters, 2014, 39, 228.	3.3	15
147	Memory effect in silicon time-gated single-photon avalanche diodes. Journal of Applied Physics, 2015, 117, .	2.5	15
148	Toward noninvasive assessment of flap viability with time-resolved diffuse optical tomography: a preclinical test on rats. Journal of Biomedical Optics, 2016, 21, 1.	2.6	15
149	Broadband Time Domain Diffuse Optical Reflectance Spectroscopy: A Review of Systems, Methods, and Applications. Applied Sciences (Switzerland), 2019, 9, 5465.	2.5	15
150	Optical signatures of radiofrequency ablation in biological tissues. Scientific Reports, 2021, 11, 6579.	3.3	15
151	Probe-hosted large area silicon photomultiplier and high-throughput timing electronics for enhanced performance time-domain functional near-infrared spectroscopy. Biomedical Optics Express, 2020, 11, 6389.	2.9	15
152	In vivo time-domain diffuse correlation spectroscopy above the water absorption peak. Optics Letters, 2020, 45, 3377.	3.3	15
153	THE QUALITY AND STORABILITY OF APPLES CV. ÂJONAGORED´ SELECTED AT-HARVEST BY TIME-RESOLVED REFLECTANCE SPECTROSCOPY. Acta Horticulturae, 2005, , 1481-1488.	0.2	14
154	Multichannel Time-Resolved Tissue Oximeter for Functional Imaging of the Brain. IEEE Transactions on Instrumentation and Measurement, 2006, 55, 85-90.	4.7	14
155	Noninvasive optical estimation of CSF thickness for brain-atrophy monitoring. Biomedical Optics Express, 2018, 9, 4094.	2.9	14
156	Timeâ€Resolved Studies of Light Propagation in Crassula and Phaseolus Leaves. Photochemistry and Photobiology, 1999, 69, 242-247.	2.5	13
157	Feasibility of white-light time-resolved optical mammography. Journal of Biomedical Optics, 2006, 11, 054035.	2.6	13
158	Effects of the instrument response function and the gate width in time-domain diffuse correlation spectroscopy: model and validations. Neurophotonics, 2019, 6, 1.	3.3	13
159	Neurophotonics: non-invasive optical techniques for monitoring brain functions. Functional Neurology, 2014, 29, 223-30.	1.3	13
160	Functional brain imaging by multi-wavelength time-resolved near infrared spectroscopy. Opto-electronics Review, 2008, 16, .	2.4	12
161	Forward solvers for photon migration in the presence of highly and totally absorbing objects embedded inside diffusive media. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2014, 31, 460.	1.5	12
162	Depth sensitivity of frequency domain optical measurements in diffusive media. Biomedical Optics Express, 2017, 8, 2990.	2.9	12

#	Article	IF	CITATIONS
163	Time-domain NIRS system based on supercontinuum light source and multi-wavelength detection: validation for tissue oxygenation studies. Biomedical Optics Express, 2021, 12, 6629.	2.9	12
164	Multi-wavelength Time Domain Optical Mammography. Technology in Cancer Research and Treatment, 2005, 4, 527-537.	1.9	11
165	Fast-gated single-photon avalanche diode for extremely wide dynamic-range applications. Proceedings of SPIE, 2009, , .	0.8	11
166	Recipes to make organic phantoms for diffusive optical spectroscopy. Applied Optics, 2013, 52, 2494.	1.8	11
167	Time-domain Raman analytical forward solvers. Optics Express, 2016, 24, 20382.	3.4	11
168	Time resolved diffuse optical spectroscopy with geometrically accurate models for bulk parameter recovery. Biomedical Optics Express, 2016, 7, 3784.	2.9	11
169	Broadband diffuse optical characterization of elastin for biomedical applications. Biophysical Chemistry, 2017, 229, 130-134.	2.8	11
170	Chromophore decomposition in multispectral time-resolved diffuse optical tomography. Biomedical Optics Express, 2017, 8, 4772.	2.9	11
171	Time domain diffuse Raman spectrometer based on a TCSPC camera for the depth analysis of diffusive media. Optics Letters, 2018, 43, 2134.	3.3	11
172	Time-domain diffuse optics with 8.6  mm ² fast-gated SiPM for extreme light harvesting. Optics Letters, 2021, 46, 424.	3.3	11
173	SELECTION OF 'SPRINGBRIGHT' NECTARINES BY TIME-RESOLVED REFLECTANCE SPECTROSCOPY (TRS) TO PREDICT FRUIT QUALITY IN THE MARKETING CHAIN. Acta Horticulturae, 2003, , 171-177.	0.2	11
174	Reconstruction of diffuse photonâ€density wave interference in turbid media from timeâ€resolved transmittance measurements. Applied Physics Letters, 1996, 69, 1674-1676.	3.3	10
175	Steady-state and time-resolved spectroscopic studies on low-density lipoprotein-bound Zn(II)-phthalocyanine. Journal of Photochemistry and Photobiology B: Biology, 1999, 49, 198-203.	3.8	10
176	<i>In Vivo</i> Measurement of Vascular Modulation in Experimental Tumors Using a Fluorescent Contrast Agent. Photochemistry and Photobiology, 2008, 84, 1249-1256.	2.5	10
177	Non destructive detection of brown heart in â€~Braeburn' apples by time-resolved reflectance spectroscopy. Procedia Food Science, 2011, 1, 413-420.	0.6	10
178	Effects of tissue heterogeneity on the optical estimate of breast density. Biomedical Optics Express, 2012, 3, 2411.	2.9	10
179	Systematic study of the effect of ultrasound gel on the performances of time-domain diffuse optics and diffuse correlation spectroscopy. Biomedical Optics Express, 2019, 10, 3899.	2.9	10
180	Absorption spectroscopy of powdered materials using time-resolved diffuse optical methods. Applied Optics, 2012, 51, 7858.	1.8	9

#	Article	IF	CITATIONS
181	Broadband extraction of tissue optical properties using a portable hybrid time-resolved continuous wave instrumentation: characterization of ex vivo organs. , 2020, , .		9
182	Multi-laboratory performance assessment of diffuse optics instruments: the BitMap exercise. Journal of Biomedical Optics, 2022, 27, .	2.6	9
183	Study on the absorption properties of sulphonated aluminum phthalocyanine in vivo and ex vivo in murine tumor models. Journal of Biomedical Optics, 1997, 2, 131.	2.6	8
184	Measuring fresh fruit and vegetable quality: advanced optical methods. , 2002, , 150-169.		8
185	A Versatile Setup for Time-Resolved Functional Near Infrared Spectroscopy Based on Fast-Gated Single-Photon Avalanche Diode and on Four-Wave Mixing Laser. Applied Sciences (Switzerland), 2019, 9, 2366.	2.5	8
186	Time resolved speckle contrast optical spectroscopy at quasi-null source-detector separation for non-invasive measurement of microvascular blood flow. Biomedical Optics Express, 2021, 12, 1499.	2.9	8
187	Monitoring the motor cortex hemodynamic response function in freely moving walking subjects: a time-domain fNIRS pilot study. Neurophotonics, 2021, 8, 015006.	3.3	8
188	OPTICAL DETECTION OF MEALINESS IN APPLES BY LASER TDRS. Acta Horticulturae, 2001, , 513-518.	0.2	8
189	Functional near-infrared spectroscopy at small source-detector distance by means of high dynamic-range fast-gated SPAD acquisitions: firstin-vivomeasurements. , 2013, , .		7
190	Performance assessment of time-domain optical brain imagers: a multi-laboratory study. , 2013, , .		7
191	Time-resolved diffused optical characterization of key tissue constituents of human bony prominence locations. Proceedings of SPIE, 2015, , .	0.8	7
192	TIME-RESOLVED REFLECTANCE SPECTROSCOPY AS A NON-DESTRUCTIVE TOOL TO ASSESS THE MATURITY AT HARVEST AND TO MODEL THE SOFTENING OF NECTARINES. Acta Horticulturae, 2005, , 1459-1464.	0.2	7
193	The impact of morphology on light transport in cancellous bone. Physics in Medicine and Biology, 2010, 55, 4917-4931.	3.0	6
194	Assessment of basic instrumental performance of time-domain optical brain imagers. Proceedings of SPIE, 2011, , .	0.8	6
195	Real-Time Dual-Wavelength Time-Resolved Diffuse Optical Tomography System for Functional Brain Imaging Based on Probe-Hosted Silicon Photomultipliers. Sensors, 2020, 20, 2815.	3.8	6
196	Performance assessment of laser sources for time-domain diffuse correlation spectroscopy. Biomedical Optics Express, 2021, 12, 5351.	2.9	6
197	In vivo test-driven upgrade of a time domain multi-wavelength optical mammograph. Biomedical Optics Express, 2021, 12, 1105.	2.9	6
198	Evaluation of a pipeline for simulation, reconstruction, and classification in ultrasound-aided diffuse optical tomography of breast tumors. Journal of Biomedical Optics, 2022, 27, .	2.6	6

#	Article	IF	CITATIONS
199	Photoluminescence studies of light emission from silicon implanted and annealed SiO2 layers. Thin Solid Films, 1996, 276, 88-91.	1.8	5
200	Accuracy of the nonlinear fitting procedure for time-resolved measurements on diffusive phantoms at NIR wavelengths. , 2009, , .		5
201	Time-resolved laser spectroscopy for the in situ characterization of methacrylate monomer flow within spruce. Wood Science and Technology, 2017, 51, 227-242.	3.2	5
202	Multi Simulation Platform for Time Domain Diffuse Optical Tomography: An Application to a Compact Hand-Held Reflectance Probe. Applied Sciences (Switzerland), 2019, 9, 2849.	2.5	5
203	Enhanced diffuse optical tomographic reconstruction using concurrent ultrasound information. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200195.	3.4	5
204	Reproducibility of identical solid phantoms. Journal of Biomedical Optics, 2022, 27, .	2.6	5
205	Generation, characterization, and medical utilization of laser-produced emission continua. Laser and Particle Beams, 2000, 18, 563-570.	1.0	4
206	Note: Comparison between a prism-based and an acousto-optic tunable filter-based spectrometer for diffusive media. Review of Scientific Instruments, 2013, 84, 016109.	1.3	4
207	Broadband time-resolved diffuse optical spectrometer for clinical diagnostics: characterization and in-vivo measurements in the 600-1350 nm spectral range. , 2015, , .		4
208	In vivo Absorption and Scattering Spectra of Human Tissues in the Red and Near Infrared. , 1998, , .		4
209	Design and characterization of a two-wavelength multichannel time-resolved system for optical topography. , 2006, , .		4
210	Novel method for depth-resolved brain functional imaging by time-domain NIRS. , 2007, , .		4
211	<title>Real-time system for fluorescence lifetime imaging</title> ., 1997,,.		3
212	<title>Nondestructive measurements of the optical properties of fruits by means of time-resolved reflectance</title> . , 1999, 3597, 445.		3
213	<title>Portable 8-channel time-resolved optical imager for functional studies of biological tissues</title> . , 2001, , .		3
214	Simultaneous acquisition of time-domain fNIRS and fMRI during motor activity. , 2007, , .		3
215	Depth dependence of estimated optical properties of a scattering inclusion by time-resolved contrast functions. Optics Express, 2008, 16, 17667.	3.4	3
216	Time-resolved optical stratigraphy in turbid media. Proceedings of SPIE, 2009, , .	0.8	3

#	Article	IF	CITATIONS
217	Fast-gated SPAD for ultra-wide dynamic range optical investigations. , 2010, , .		3
218	Time-Resolved Diffuse Optical Spectroscopy: A Differential Absorption Approach. Applied Spectroscopy, 2010, 64, 1220-1226.	2.2	3
219	Photonics for Life. IEEE Pulse, 2011, 2, 16-23.	0.3	3
220	Monolithic time-to-digital converter chips for time-correlated single-photon counting and fluorescence lifetime measurements. Proceedings of SPIE, 2013, , .	0.8	3
221	Compact dual-wavelength system for time-resolved diffuse optical spectroscopy. , 2017, , .		3
222	Time-resolved spectroscopy and imaging in diffusive media applied to medical diagnostics. Rivista Del Nuovo Cimento, 2002, 25, 1-19.	5.7	3
223	Solid heterogeneous phantoms for multimodal ultrasound and diffuse optical imaging: an outcome of the SOLUS project for standardization. , 2019, , .		3
224	Role of collagen scattering for in vivo tissue characterization. , 2010, , .		3
225	A wearable time domain near-infrared spectroscopy system. , 2019, , .		3
226	A solid phantom recipe for biophotonics applications: a step towards anatomically correct 3D tissue phantoms. , 2019, , .		3
227	Flow cytometric detection of glutathione S-transferase isoenzymes by quantitative immunofluorescence under nonsaturating conditions. Cytometry, 1995, 20, 134-145.	1.8	2
228	An integrated instrumentation for lightâ€scattering and timeâ€resolved fluorescence measurements. Review of Scientific Instruments, 1995, 66, 2405-2410.	1.3	2
229	Annealing Studies of Visible Light Emission from Silicon Nanocrystals Produced by Implantation. Materials Research Society Symposia Proceedings, 1996, 452, 105.	0.1	2
230	<title>In-vivo absorption and scattering spectra of human tissues by time-resolved reflectance</title> . , 1998, , .		2
231	Spatial resolution of imaging with diffusing light: Edge spread function measurements on a realistic tissue phantom. Medical Physics, 1999, 26, 462-471.	3.0	2
232	<title>Accelerated Monte Carlo models to simulate fluorescence of layered tissue</title> . , 2000, 4160, 14.		2
233	<title>In-vivo multidistance multiwavelength time-resolved reflectance spectroscopy of layered tissues</title> . , 2001, 4250, 290.		2
234	<title>Dual-wavelength time-resolved optical mammograph for clinical studies</title> ., 2001, , .		2

#	Article	IF	CITATIONS
235	Rigorous characterization of time-resolved diffuse spectroscopy systems for measurements of absorption and scattering properties using solid phantoms. , 2003, , .		2
236	Multi-channel time-resolved tissue oximeter for functional imaging of the brain. , 0, , .		2
237	Time-resolved diffuse optical spectroscopy of wood. , 2007, 6633, 346.		2
238	Hybrid heuristic time dependent solution of the radiative transfer equation for the slab. , 2009, , .		2
239	Time-resolved diffuse optical spectroscopy up to 1700 nm using a time-gated InGaAs/InP single-photon avalanche diode. Proceedings of SPIE, 2011, , .	0.8	2
240	Breast density assessment by means of time domain optical mammography at 635-1060 nm. Proceedings of SPIE, 2011, , .	0.8	2
241	In vivo swine myocardial tissue characterization and monitoring during open chest surgery by time-resolved diffuse near-infrared spectroscopy. , 2011, , .		2
242	Inter-Laboratory Comparison of Optical Properties Performed on Intralipid and India Ink. , 2012, , .		2
243	A non-contact time-domain scanning brain imaging system: first in-vivo results. , 2013, , .		2
244	Time-resolved optical spectroscopy of the chest: is it possible to probe the lung?. , 2013, , .		2
245	Collagen content as a risk factor in breast cancer? A pilot clinical study. , 2015, , .		2
246	Towards next generation time-domain diffuse optics devices. , 2015, , .		2
247	Non-contact scanning time-domain functional optical imaging of the adult human brain. Proceedings of SPIE, 2015, , .	0.8	2
248	Coherent fluctuations in time-domain diffuse optics. APL Photonics, 2020, 5, 071301.	5.7	2
249	A multi-laboratory comparison of photon migration instruments and their performances: the BitMap exercise. , 2021, , .		2
250	Time-Domain Diffuse Optical Imaging of Tissue by Non-contact Scanning. Springer Series in Chemical Physics, 2015, , 561-585.	0.2	2
251	Monitoring radiofrequency ablation of biological tissue using broadband time-resolved diffuse optical spectroscopy. , 2019, , .		2
252	Performance Assessment of Time-Domain Optical Brain Imagers: The nEUROPt Protocol. , 2012, , .		2

#	Article	IF	CITATIONS
253	Development of an optical non-contact time-resolved diffuse reflectance scanning imaging system. , 2012, , .		2
254	Optical Assessment of Breast Density and its Dependence on Tissue Heterogeneity. , 2012, , .		2
255	The BITMAP exercise: a multi-laboratory performance assessment campaign of diffuse optical instrumentation. , 2019, , .		2
256	<title>Time-resolved transmittance imaging with a diffusion model</title> . , 1995, , .		1
257	<title>Dual-wavelength multichannel system for time-resolved oximetry</title> . , 1998, 3566, 97.		1
258	Time-resolved reflectance spectroscopy in tissues. , 1999, , .		1
259	<title>Time-gated and lifetime imaging techniques for the detection of skin tumors</title> . , 1999, , .		1
260	Performance assessment of two time-domain-scanning optical mammographs. , 2003, , .		1
261	Functional muscle studies by dual-wavelength eight-channel time-resolved oximetry. , 2003, , .		1
262	Multidistance optical characterization of the female breast by time-resolved diffuse spectroscopy. , 2003, , .		1
263	Four-wavelength time-resolved optical mammograph. , 2003, 4955, 203.		1
264	Design and characterization of a fast 16-source 64-detector time-resolved system for functional NIR studies. , 2005, 5859, 116.		1
265	Optical Characterisation of Bone Tissue for Diffusion Optical Tomography Applied to Skeletal Implants. , 2007, , .		1
266	Clinically compatible time-resolved diffuse spectroscopy in the 600-1100 nm bandwidth. , 2008, , .		1
267	Nonlinear fitting procedure for accurate time-resolved measurements in diffusive media. , 2009, , .		1
268	Brain functional imaging at small source-detector distances based on fast-gated single-photon avalanche diodes. Proceedings of SPIE, 2009, , .	0.8	1
269	Functional diffuse reflectance spectroscopy at small source-detector distances based on fast-gated single-photon avalanche diodes. , 2010, , .		1
270	Fast-gated single-photon detector module for wide dynamic range optical measurements. , 2011, , .		1

#	Article	IF	CITATIONS
271	Non-contact time-domain scanning brain imager: results of proof of principle tests. Proceedings of SPIE, 2011, , .	0.8	1
272	Time-domain diffuse optical spectroscopy up to 1700 nm using an InGaAs/InP single-photon avalanche diode. Proceedings of SPIE, 2011, , .	0.8	1
273	Time-domain diffuse optical spectroscopy beyond 1100 nm: initial feasibility study. Proceedings of SPIE, 2011, , .	0.8	1
274	First in vivo spectral characterization of breast up to 1300 nm. , 2011, , .		1
275	Optical identification of subjects at high risk for developing breast cancer. Proceedings of SPIE, 2013, ,	0.8	1
276	Comparison of organic phantom recipes and characterization by time-resolved diffuse optical spectroscopy. Proceedings of SPIE, 2013, , .	0.8	1
277	In-vivo optical spectroscopy in the time-domain beyond 1100 nm. , 2013, , .		1
278	Optical discrimination between malignant and benign breast lesions. Proceedings of SPIE, 2015, , .	0.8	1
279	Time domain diffuse optical spectroscopy:In vivoquantification of collagen in breast tissue. , 2015, , .		1
280	Fiber-based hybrid probe for non-invasive cerebral monitoring in neonatology. Proceedings of SPIE, 2015, , .	0.8	1
281	Time-domain diffuse optics: towards next generation devices. , 2015, , .		1
282	Characterization of homogeneous tissue phantoms for performance tests in diffuse optics. Proceedings of SPIE, 2016, , .	0.8	1
283	Non-contact time-domain imaging of functional brain activation and heterogeneity of superficial signals. Proceedings of SPIE, 2017, , .	0.8	1
284	Thyroid tissue constituents characterization and application to in vivo studies by broadband (600-1200) Tj ETQq	0 0 0 rgB	T /Qverlock 10
285	Time-domain diffuse optics using bioresorbable fibers: a proof-of-principle study. , 2017, , .		1
286	How Should the New Generation of Detectors for Diffuse Optics Be? A Systematic Simulation Study. , 2018, , .		1
287	Breast Monitoring by Time-Resolved Diffuse Optical Imaging. Springer Series in Chemical Physics, 2015, , 587-611.	0.2	1
288	Bioresorbable fibers for time-domain diffuse optical measurements: a step toward next generation optical implantable devices. , 2019, , .		1

#	Article	IF	CITATIONS
289	Multi-wavelength time-resolved optical mammography. , 2004, , .		1
290	Mapping cerebral hemodynamics in brain cortex by multi-channel time-resolved near-infrared spectroscopy. , 2006, , .		1
291	Wood characterization by diffuse time-resolved optical spectroscopy. , 2008, , .		1
292	SOLUS Project: Bringing Innovation into Breast Cancer Diagnosis and in the Time-Domain Diffuse Optical Field. , 2020, , .		1
293	Spatial changes in the absorption spectrum of the female breast. , 2000, , .		1
294	Time-resolved optical mammograph for clinical studies beyond 900 nm. , 2002, , .		1
295	Time-Resolved Functional Near-Infrared Spectroscopy at Null Source-Detector Separation. , 2008, , .		1
296	Optical mammography at 635–1060 nm for breast density assessment and lesion characterization. , 2010, , .		1
297	Multispectral and lifetime imaging for the detection of skin tumors. , 1998, , .		1
298	Broadband Time-Resolved Diffuse Optical Spectrometer for Clinical Diagnostics: Characterization and in-vivo Measurements in the 600-1350 nm spectral range. , 2015, , .		1
299	Time-resolved diffused optical characterization of key tissue constituents of human bony prominence locations. , 2015, , .		1
300	New Compact and Flexible Picosecond Laser System for Multi-wavelength Time-Resolved Tissue Spectroscopy. , 2016, , .		1
301	Long-lasting, liquid phantom for diffuse optical and correlation spectroscopies. , 2016, , .		1
302	In vivo depth heterogeneity of the abdomen assessed by broadband time-domain diffuse optical spectroscopy. , 2017, , .		1
303	Multi-wavelength time domain diffuse optical tomography for breast cancer: initial results on silicone phantoms. , 2019, , .		1
304	The LUCA device: laser and ultrasound co-analyzer for thyroid nodules. , 2019, , .		1
305	Time domain diffuse optical spectroscopy for the monitoring of thermal treatment in biological tissue , 2020, , .		1
306	Multi-laboratory efforts for the standardization of performance assessment of diffuse optics instruments $\hat{a} \in $ the BitMap Exercise. , 2020, , .		1

#	Article	IF	CITATIONS
307	Compact Time-Domain NIRS oximeter for non-invasive brain and muscle monitoring. , 2021, , .		1
308	In-vivo time-domain diffuse correlation spectroscopy with a superconducting nanowire single-photon detector. , 2021, , .		1
309	<title>Time-gated fluorescence imaging of different organs in tumor-bearing mice after porphyrin administration</title> . , 1994, , .		0
310	Time Resolved Detection of Hard X-Rays from a Laser-Produced Plasma and Experimental Scatter-Reduced Imaging at 70 KeV. , 1996, , .		0
311	<title>Measurements of the edge spread function on a realistic tissue phantom</title> . , 1997, , .		0
312	<title>Discrimination between scattering and absorption inhomogeneities using time-resolved transmittance imaging</title> . , 1997, , .		0
313	<title>Tumor detection in HpD-sensitized mice with fluorescence lifetime imaging</title> . , 1997, , .		0
314	<title>Effects of the background optical properties on time-resolved transmittance imaging</title> . , 1998, 3194, 191.		0
315	<title>Compact time-resolved reflectance system for dual-wavelength multichannel assessment of tissue absorption and scattering</title> . , 1999, , .		Ο
316	<title>Quantitative imaging in time-resolved transillumination experiments using time-dependent contrast functions</title> . , 1999, 3597, 398.		0
317	In vivo optical biopsy of the calcaneous: a novel diagnostic tool for osteoporosis?. , 0, , .		0
318	Time-resolved optical mammography at four wavelengths between 680 and 975 nm. , 0, , .		0
319	Eight-channel time-resolved tissue oximeter for functional muscle studies. , 2003, , .		Ο
320	Breast lesion characterization by a novel nonlinear perturbation approach. , 2003, 5138, 23.		0
321	Clinical trial on time-resolved optical mammography at four wavelengths (680-975 nm). , 2003, , .		Ο
322	Selection Models for the Internal Quality of Fruit, based on Time Domain Laser Reflectance Spectroscopy. Biosystems Engineering, 2004, 88, 313-313.	4.3	0
323	Dynamic time-resolved diffuse spectroscopy based on white light generation in a photonic crystal fiber. , 2005, 5859, 124.		0
324	Time-resolved spectroscopy based on white-light generation of short pulses in a photonic crystal fiber. , 2005, 5693, 435.		0

#	Article	IF	CITATIONS
325	Determination of the optical properties of anisotropic biological media using isotropic and anisotropic diffusion models. Proceedings of SPIE, 2007, 6629, 166.	0.8	0
326	Assessment of collagen absorption and related potential diagnostic applications. Proceedings of SPIE, 2007, 6629, 86.	0.8	0
327	Time-gated single-photon avalanche diode for time-resolved diffuse reflectance at small source-detector separation. Proceedings of SPIE, 2007, , .	0.8	0
328	Study of anti-angiogenic drugs by fluorescence imaging and spectroscopy of a contrast agent in mice. Proceedings of SPIE, 2007, , .	0.8	0
329	Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of small animals. Proceedings of SPIE, 2007, , .	0.8	Ο
330	CW and time domain procedures for accurate calibration of optical properties of liquid diffusive media at NIR wavelengths. Proceedings of SPIE, 2007, , .	0.8	0
331	Time-resolved diffuse reflectance at small source-detector separation using a time-gated single-photon avalanche diode. , 2007, , .		Ο
332	Time-resolved diffuse optical spectroscopy of small tissue samples. Proceedings of SPIE, 2007, , .	0.8	0
333	Assessment of collagen absorption and related potential diagnostic applications. , 2007, , .		Ο
334	Functional brain tomography using a time-gated ICCD camera. Proceedings of SPIE, 2009, , .	0.8	0
335	Time-resolved transmittance spectroscopy of breast in vivo up to 1100 nm: test on 10 volunteers. , 2009, , .		Ο
336	Time-resolved diffuse optical spectroscopy: a differential absorption approach. , 2009, , .		0
337	Effects of a finite spectral bandwidth light source in time-resolved diffuse spectroscopy. Proceedings of SPIE, 2009, , .	0.8	0
338	Fast-gated single-photon detectors boost dynamic range in NIR spectroscopy. Proceedings of SPIE, 2010, , .	0.8	0
339	Intra-subject spatial changes in the optical properties of the female breast: A preliminary two-subject study. Medical Laser Application: International Journal for Laser Treatment and Research, 2010, 25, 138-146.	0.3	0
340	Time domain diffuse optical imaging and spectroscopy of breast. , 2011, , .		0
341	Memory effect in gated single-photon avalanche diodes: a limiting noise contribution similar to afterpulsing. , 2013, , .		0
342	Optical spectroscopy in the time-domain beyond 1.1 μm: A tool for the characterization of diffusive media. , 2013, , .		0

#	Article	IF	CITATIONS
343	Realistic phantoms for diffuse optical imaging using totally absorbing objects. , 2013, , .		0
344	Multi-laboratory investigation of the optical properties of the human head. , 2013, , .		0
345	Realistic inhomogeneous phantoms using an equivalent black volume. Proceedings of SPIE, 2013, , .	0.8	0
346	Experimental results on time-resolved reflectance diffuse optical tomography with fast-gated SPADs. Proceedings of SPIE, 2013, , .	0.8	0
347	Optimal arrangements of fiber optic probes to enhance the spatial resolution in depth for 3D reflectance diffuse optical tomography with time-resolved measurements performed with fast-gated single-photon avalanche diodes. Proceedings of SPIE, 2014, , .	0.8	0
348	Multi-center study of the optical properties of the human head. , 2014, , .		0
349	Optical mammography: Characterization of malignant and benign breast lesions by a perturbative model. , 2014, , .		0
350	Design and construction of a solid switchable phantom for diffuse optical imaging. , 2015, , .		0
351	Solid switchable phantom for diffuse optical imaging. , 2015, , .		0
352	Design and construction of a solid switchable phantom for diffuse optical imaging. , 2015, , .		0
353	Optical study on the dependence of breast tissue composition and structure on subject anamnesis. , 2015, , .		0
354	Time-resolved diffuse optical tomography for non-invasive flap viability assessment: pre-clinical tests on rats. , 2015, , .		0
355	Diffuse optical tomography by using time-resolved single pixel camera. , 2015, , .		0
356	In-depth quantification by using multispectral time-resolved diffuse optical tomography. , 2015, , .		0
357	An innovative 8 channels system for time-resolved diffuse optical tomography based on SiPMs. , 2016, ,		0
358	Large area silicon photomultipliers allow extreme depth penetration in time-domain diffuse optics. , 2016, , .		0
359	Statistics of photon penetration depth in diffusive media. , 2017, , .		0

#	Article	IF	CITATIONS
361	Time-resolved analytical model for Raman scattering in a diffusive medium. Proceedings of SPIE, 2017, , .	0.8	Ο
362	Multiple-view time-resolved diffuse optical tomography based on structured illumination and compressive detection. , 2017, , .		0
363	Performance evaluation of time-domain multispectral diffuse optical tomography in the reflection geometry. , 2017, , .		0
364	Attractive new technologies for 7-wavelength time domain optical mammography. Proceedings of SPIE, 2017, , .	0.8	0
365	Novel Approaches to Photon Detection and Timing for 7-Wavelength Time Domain Optical Mammography. , 2017, , .		0
366	Frequency Offset Raman Spectroscopy (FORS) for In-Depth Analysis of Scattering Media. , 2017, , .		0
367	Reconstruction of the absorption spectra of layered diffusive media by time-and space-resolved reflectance spectroscopy. , 2000, , .		0
368	Fully automated facility for absorption and scattering spectroscopy in diffusive media. , 2000, , .		0
369	DNA microarray reading by an intensified CCD camera with picosecond time resolution. , 2000, , .		Ο
370	Effects of the menstrual cycle on the optical properties of the human breast. , 2000, , .		0
371	In vivo quantification of biological tissues components and structure by time-resolved reflectance spectroscopy in the wavelength range 610-1010 nm. , 2000, , .		Ο
372	Effects of PDT on the in vivo absorption properties of AlS2Pc in tumor-bearing mice. , 2000, , .		0
373	Fluorescence monitoring during Photodynamic Therapy of experimental tumors with AlS2Pc. , 2000, , .		Ο
374	Accelerated reverse-path Monte Carlo model to simulate fluorescence in layered tissue. , 2002, , .		0
375	In vivo spectroscopy of the calcaneous: a first step towards optical diagnosis of osteoporosis?. , 2002, , .		Ο
376	Spectroscopic techniques for analysing raw material quality. , 2003, , 270-290.		0
377	Functional cortical brain mapping by near infrared time-resolved spectroscopy. , 2004, , .		0
378	Diffuse time-resolved reflectance and transmittance measurements of the female breast using different interfiber distances in the region 610- 1040 nm. , 2004, , .		0

#	Article	IF	CITATIONS
379	Experimental validation of a fitting procedure for retrieving the optical properties of layered media from time-resolved reflectance measurements. , 2004, , .		0
380	A phantom for investigating light propagation through layered diffusive media. , 2004, , .		0
381	Bulk hemoglobin, lipid and water content in the female breast from multi-wavelength time-resolved optical mammography. , 2004, , .		0
382	Time-resolved diffuse reflectance at null source-detector separation: a novel approach to photon migration. , 2006, , .		0
383	Spectral- and time-resolved optical mammography by means of a pulsed supercontinuum ligth source. , 2006, , .		Ο
384	In vivo time-resolved multi-distance spectroscopy of human forehead: a step towards optical characterization of brain tissue. , 2006, , .		0
385	Absorption properties of breast: the contribution of collagen. , 2006, , .		Ο
386	Simultaneous acquisition of time-domain fNIRS and fMRI during brain cortex activity. , 2008, , .		0
387	Spectral extension of time-resolved transmittance spectroscopy up to 1100 nm for the in vivo quantification of collagen in breast tissue. , 2008, , .		0
388	Time-resolved optical mammography from 635 to 1060 nm for collagen quantification. , 2008, , .		0
389	Time domain diffuse optical imaging and spectroscopy: from lab to clinic. , 2008, , .		0
390	CW and Time Domain Methods to Prepare Accurately Calibrated Liquid Diffusive Phantoms at NIR Wavelengths. , 2008, , .		0
391	Heuristic Analytical Solution of the Time Dependent Radiative Transfer Equation for a Semi-infinite Medium. , 2008, , .		Ο
392	Self-Adaptive Method to Uncouple Cortex-Related Brain Activation from Superficial Effects. , 2008, , .		0
393	Time-resolved transmittance of small samples: Investigation of bone tissue for diagnostic purposes. , 2008, , .		Ο
394	Fast Gating of Single-Photon Avalanche Diodes for Photon Migration Measurements. Lecture Notes in Electrical Engineering, 2010, , 151-154.	0.4	0
395	A method to assess the scattering-free absorption properties of nanostructured materials. , 2010, , .		0
396	Spectral distortions due to a finite spectral bandwidth light source in time-resolved diffuse spectroscopy. , 2010, , .		0

#	Article	IF	CITATIONS
397	Ultra-Fast Time-Gated SPAD for Multi-Wavelength Wide Dynamic Range Spectroscopy. , 2010, , .		0
398	The Spread Matrix: a method to predict the effect of a non time-invariant measurement system. , 2010, , .		0
399	Time-resolved broadband diffuse spectroscopy using a differential absorption approach. , 2010, , .		Ο
400	Towards the Definition of Accurately Calibrated Liquid Phantoms for Photon Migration at NIR Wavelengths: a Multi-Laboratory Study. , 2010, , .		0
401	In-vivo characterization of myocardial tissue by time-resolved diffuse optical spectroscopy in open chest pig. , 2010, , .		Ο
402	Spectral Distortions in Time-Resolved Diffuse Optical Spectroscopy Due to AOTFs. , 2012, , .		0
403	Recipes for Organic Phantoms and Characterization by Time-Resolved Diffuse Optical Spectroscopy. , 2012, , .		0
404	Optical Spectroscopy up to 1700 nm: a Time-Resolved Approach Combined with an InGaAs/InP Single-Photon Avalanche Diode. , 2012, , .		0
405	Optical Characterization of Benign and Malignant Breast Lesions by Perturbative Model. , 2014, , .		0
406	Correlation between Optically-derived Tissue Parameters and Percentage Mammographic Density. , 2014, , .		0
407	Realization and Characterization of an Automatized Setup for Non-Invasive Assessment of Flap Viability by means of Fast-Gated SPAD. , 2014, , .		0
408	Time-Resolved Reflectance for the Assessment of the Optical Properties of Tissues. , 1996, , 95-107.		0
409	Imaging Through Diffusing Media with Time-Resolved Transmittance. , 1996, , 475-478.		Ο
410	Non-contact scanning time-domain functional optical imaging of the adult human brain. , 2015, , .		0
411	Time-domain diffuse optics: towards next generation devices. , 2015, , .		0
412	Time-resolved diffuse optical tomography for non-invasive flap viability assessment: pre-clinical tests on rats. , 2015, , .		0
413	In-depth quantification by using Multispectral Time-Resolved Diffuse Optical Tomography. , 2015, , .		0
414	Collagen content as a risk factor in breast cancer? A pilot clinical study , 2015, , .		0

#	Article	IF	CITATIONS
415	Optical study on the dependence of breast tissue composition and structure on subject anamnesis. , 2015, , .		0
416	Time-Resolved Reflectance Diffuse Optical Tomography with Silicon PhotoMultipliers. , 2016, , .		0
417	Quantification of effective absorption perturbations for Time-Resolved Diffuse Optical Tomography with totally absorbing objects. , 2016, , .		0
418	Statistics of the light penetration depth in a diffusive medium. , 2016, , .		0
419	In vivo Time domain Broadband (600 -1200 nm) Diffuse Optical Characterization of Human Bone. , 2016, ,		0
420	Is Collagen an Independent Risk Factor for Breast Cancer?. , 2016, , .		0
421	Multidistance time domain diffuse optical spectroscopy in the assessment of abdominal fat heterogeneity. , 2018, , .		0
422	Study of optimal measurement conditions for time-domain diffuse optics systems. , 2018, , .		0
423	Compressive sensing time-domain Raman spectrometer for depth sensing of diffusive media. , 2019, , .		0
424	In vivo time-domain diffuse correlation spectroscopy of the human muscle above 1000 nm. , 2019, , .		0
425	The BitMap dataset: an open dataset on performance assessment of diffuse optics instruments. , 2019, , .		0
426	Large area SiPM and high throughput timing electronics: toward new generation time-domain instruments. , 2019, , .		0
427	Effects of ultrasound impedance matching fluids on diffuse optical measurements. , 2019, , .		0
428	Spectral approach to time domain diffuse optical tomography for breast cancer: validation on meat phantoms. , 2019, , .		0
429	Spatially-enhanced time-domain NIRS for determination of optical properties in layered structures. , 2019, , .		0
430	In vivo time domain speckle contrast optical spectroscopy. , 2019, , .		0
431	Blood-lipid liquid phantom for assessing time and frequency domain tissue oximeter performances. , 2019, , .		0
432	A solid phantom recipe and exploration for biophotonics applications: a step to produce standardized tissue phantoms. , 2020, , .		0

#	Article	IF	CITATIONS
433	High Signal-to-Noise Ratio and Depth Penetration in Time-Domain Functional Near-Infrared Spectroscopy Combining Large Area Detector and High Throughput Electronics. , 2020, , .		0
434	In vivo time-domain diffuse correlation spectroscopy beyond the water absorption peak. , 2020, , .		0
435	Performance and reproducibility assessment across multiple time-domain near-infrared spectroscopy device replicas. , 2022, , .		0
436	Fast-gated digital silicon photomultiplier maximizes light harvesting and depth sensitivity in time-domain diffuse optics. , 2021, , .		0
437	Optical mammography in the time domain up to 1060 nm: from tests on healthy women to initial data for monitoring neoadjuvant chemotherapy. , 2021, , .		0
438	SOLUS: a novel multimodal approach to ultrasound and diffuse optics imaging of breast cancer. , 2021, , .		0
439	Phantoms for performance verification and quality control in developing a photonics-based medical device (VASCOVID): a regulatory driven approach. , 2021, , .		0
440	Motor cortex hemodynamic response function in freely moving subjects recorded via time domain fNIRS. , 2021, , .		0
441	First In-Vivo Diffuse Optics Application of a Time-Domain Multiwavelength Wearable Optode. , 2022, , .		0
442	Preliminary Evidence of the Efficacy of Time-Resolved Broad-Spectrum Optical Mammography in Monitoring Neoadjuvant Chemotherapy. , 2022, , .		0
443	Superconducting nanowire detectors for in vivo time-domain diffuse correlation spectroscopy: system and validations. , 2022, , .		Ο