List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3478057/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of fire on soil organic carbon, soil total nitrogen, and soil properties under rotational shifting cultivation in northern Thailand. Journal of Environmental Management, 2022, 302, 113978.	3.8	21
2	Carbon, Nitrogen and Water Footprints of Organic Rice and Conventional Rice Production over 4 Years of Cultivation: A Case Study in the Lower North of Thailand. Agronomy, 2022, 12, 380.	1.3	28
3	Soil priorities in Japan. Geoderma Regional, 2022, 28, e00485.	0.9	0
4	Assessing Soil Organic Carbon, Soil Nutrients and Soil Erodibility under Terraced Paddy Fields and Upland Rice in Northern Thailand. Agronomy, 2022, 12, 537.	1.3	12
5	Hokkaido Region. World Soils Book Series, 2021, , 135-184.	0.1	0
6	Agricultural soil management to reduce N2O emission. IOP Conference Series: Earth and Environmental Science, 2021, 694, 012003.	0.2	0
7	Spatial Evaluation of Greenhouse Gas Fluxes in a Sasa (Dwarf Bamboo) Invaded Wetland Ecosystem in Central Hokkaido, Japan. Atmosphere, 2021, 12, 448.	1.0	1
8	Effects of Three Types of Organic Fertilizers on Greenhouse Gas Emissions in a Grassland on Andosol in Southern Hokkaido, Japan. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	19
9	Evaluation of CH4 Emission in Two Paddy Field Areas, Khonkaen and Ayutthaya, in Thailand. Agriculture (Switzerland), 2021, 11, 467.	1.4	0
10	Impact of burning on soil organic carbon of maize-upland rice system in Mae Chaem Basin of Northern Thailand. Geoderma, 2021, 392, 115002.	2.3	13
11	Soils and sustainable development goals of the United Nations: An International Union of Soil Sciences perspective. Geoderma Regional, 2021, 25, e00398.	0.9	133
12	Response of hydrological processes to climate and land use changes in Hiso River watershed, Fukushima, Japan. Physics and Chemistry of the Earth, 2021, 123, 103010.	1.2	6
13	Effects of Long-Term Nitrogen Fertilization and Ground Water Level Changes on Soil CO2 Fluxes from Oil Palm Plantation on Tropical Peatland. Atmosphere, 2021, 12, 1340.	1.0	3
14	Do tillage and conversion of grassland to cropland always deplete soil organic carbon?. Soil Science and Plant Nutrition, 2020, 66, 76-83.	0.8	12
15	Soil Organic Carbon in Sandy Paddy Fields of Northeast Thailand: A Review. Agronomy, 2020, 10, 1061.	1.3	54
16	Managing Soils for Recovering from the COVID-19 Pandemic. Soil Systems, 2020, 4, 46.	1.0	51
17	Soil carbon and nitrogen and tomato yield response to cover crop management. Agronomy Journal, 2020, 112, 1636-1648.	0.9	8
18	Dynamics of N Derived from ¹⁵ N-labeled Rye in Soil–tomato System as Influenced by Cover Crop Residue Management. Horticulture Journal, 2020, 89, 394-402.	0.3	3

#	Article	IF	CITATIONS
19	Carbon Sequestration and Contribution of CO2, CH4 and N2O Fluxes to Global Warming Potential from Paddy-Fallow Fields on Mineral Soil Beneath Peat in Central Hokkaido, Japan. Agriculture (Switzerland), 2020, 10, 6.	1.4	23
20	Mass spectrometric multiple soil-gas flux measurement system with a portable high-resolution mass spectrometer (MULTUM) coupled to an automatic chamber for continuous field observations. Atmospheric Measurement Techniques, 2020, 13, 6657-6673.	1.2	3
21	Afforestation of loess soils: Old and new organic carbon in aggregates and density fractions. Catena, 2019, 177, 49-56.	2.2	22
22	Soil N2O Emissions under Different N Rates in an Oil Palm Plantation on Tropical Peatland. Agriculture (Switzerland), 2019, 9, 213.	1.4	15
23	Short-term land-use change from grassland to cornfield increases soil organic carbon and reduces total soil respiration. Soil and Tillage Research, 2019, 186, 1-10.	2.6	30
24	Impact of land use change on greenhouse gases emissions in peatland: a review. International Agrophysics, 2019, 33, 167-173.	0.7	18
25	Predicting local-scale impact of climate change on rice yield and soil organic carbon sequestration: A case study in Roi Et Province, Northeast Thailand. Agricultural Systems, 2018, 164, 58-70.	3.2	27
26	Effects of the ridge mulched system on soil water and inorganic nitrogen distribution in the Loess Plateau of China. Agricultural Water Management, 2018, 203, 277-288.	2.4	27
27	Evaluating the effect of liming on N2O fluxes from denitrification in an Andosol using the acetylene inhibition and 15N isotope tracer methods. Biology and Fertility of Soils, 2018, 54, 71-81.	2.3	22
28	Temporal Dynamics of Nitrous Oxide Emission and Nitrate Leaching in Renovated Grassland with Repeated Application of Manure and/or Chemical Fertilizer. Atmosphere, 2018, 9, 485.	1.0	2
29	Impact of Management Practices on Methane Emissions from Paddy Grown on Mineral Soil over Peat in Central Hokkaido, Japan. Atmosphere, 2018, 9, 212.	1.0	3
30	Variation in Soil Properties Regulate Greenhouse Gas Fluxes and Global Warming Potential in Three Land Use Types on Tropical Peat. Atmosphere, 2018, 9, 465.	1.0	21
31	Changes of Soil C Stock under Establishment and Abandonment of Arable Lands in Permafrost Area—Central Yakutia. Atmosphere, 2018, 9, 308.	1.0	6
32	Integrated Effects of Land Use and Topography on Streamflow Response to Precipitation in an Agriculture-Forest Dominated Northern Watershed. Water (Switzerland), 2018, 10, 633.	1.2	9
33	Carbon stock estimation and changes associated with thermokarst activity, forest disturbance, and land use changes in Eastern Siberia. Geoderma Regional, 2018, 14, e00171.	0.9	6
34	The effect of organic matter application on carbon sequestration and soil fertility in upland fields of different types of Andosols. Soil Science and Plant Nutrition, 2017, 63, 200-220.	0.8	40
35	Practices sustaining soil organic matter and rice yield in a tropical monsoon region. Soil Science and Plant Nutrition, 2017, , 1-14.	0.8	11
36	Nitrous and nitric oxide emissions from a cornfield and managed grassland: 11 years of continuous measurement with manure and fertilizer applications, and land-use change. Soil Science and Plant Nutrition, 2017, 63, 185-199.	0.8	16

#	Article	IF	CITATIONS
37	Effect of groundwater level fluctuation on soil respiration rate of tropical peatland in Central Kalimantan, Indonesia. Soil Science and Plant Nutrition, 2017, 63, 1-13.	0.8	40
38	Modeling the biomass of energy crops: Descriptions, strengths and prospective. Journal of Integrative Agriculture, 2017, 16, 1197-1210.	1.7	19
39	Comparison of Langmuir and Freundlich adsorption equations within the SWAT-K model for assessing potassium environmental losses at basin scale. Agricultural Water Management, 2017, 180, 205-211.	2.4	59
40	Mitigating Global Warming Potential and Greenhouse Gas Intensities by Applying Composted Manure in Cornfield: A 3-Year Field Study in an Andosol Soil. Agriculture (Switzerland), 2017, 7, 13.	1.4	19
41	Effects of soil water content and grass recycling on N2O emission in an urban lawn under laboratory incubation study. AIP Conference Proceedings, 2017, , .	0.3	0
42	Understory Dwarf Bamboo Affects Microbial Community Structures and Soil Properties in a <i>Betula ermanii</i> Forest in Northern Japan. Microbes and Environments, 2017, 32, 103-111.	0.7	5
43	Estimating agro-ecosystem carbon balance of northern Japan, and comparing the change in carbon stock by soil inventory and net biome productivity. Science of the Total Environment, 2016, 554-555, 293-302.	3.9	9
44	Physiological and Genotypic Characteristics of Nitrous Oxide (N ₂ O)-Emitting <i>Pseudomonas</i> Species Isolated from Dent Corn Andisol Farmland in Hokkaido, Japan. Microbes and Environments, 2016, 31, 93-103.	0.7	12
45	Methane and Nitrous Oxide Emissions from Tropical Peat Soil. , 2016, , 339-351.		6
46	Evaluation of greenhouse gas emissions in a <i>Miscanthus sinensis</i> Andersson-dominated semi-natural grassland in Kumamoto, Japan. Soil Science and Plant Nutrition, 2016, 62, 80-89.	0.8	2
47	Assessing potassium environmental losses from a dairy farming watershed with the modified SWAT model. Agricultural Water Management, 2016, 175, 91-104.	2.4	8
48	Manure application has an effect on the carbon budget of a managed grassland in southern Hokkaido, Japan. Soil Science and Plant Nutrition, 2015, 61, 856-872.	0.8	12
49	Effect of manure application on seasonal carbon fluxes in a temperate managed grassland in Southern Hokkaido, Japan. Catena, 2015, 133, 474-485.	2.2	9
50	Estimating sediment and particulate organic nitrogen and particulate organic phosphorous yields from a volcanic watershed characterized by forest and agriculture using SWAT model. Annales De Limnologie, 2015, 51, 23-35.	0.6	11
51	Water connectivity in hillslope of upland–riparian zone and the implication for stream nitrate-N export during rain events in an agricultural and forested watershed. Environmental Earth Sciences, 2015, 74, 4535-4547.	1.3	1
52	Hierarchical Bayesian models for soil CO ₂ flux using soil texture: a case study in central Hokkaido, Japan. Soil Science and Plant Nutrition, 2015, 61, 116-132.	0.8	13
53	Snowmelt and the hydrological interaction of forest-grassland ecosystems in Central Yakutia, eastern Siberia. Hydrological Processes, 2015, 29, 3074-3083.	1.1	10
54	Evaluation of N2O and CO2 hot moments in managed grassland and cornfield, southern Hokkaido, Japan. Catena, 2015, 133, 1-13.	2.2	15

#	Article	IF	CITATIONS
55	Factors controlling the long-term temporal and spatial patterns of nitrate-nitrogen export in a dairy farming watershed. Environmental Monitoring and Assessment, 2015, 187, 206.	1.3	6
56	Hierarchical Bayesian calibration of nitrous oxide (N2O) and nitrogen monoxide (NO) flux module of an agro-ecosystem model: ECOSSE. Ecological Modelling, 2015, 316, 14-27.	1.2	8
57	Nitrous oxide fluxes from soil under different crops and fertilizer management. Plant, Soil and Environment, 2015, 61, 385-392.	1.0	6
58	Modeling Ponded Infiltration in Fine Textured Soils with Coarse Interlayer. Soil Science Society of America Journal, 2014, 78, 745-753.	1.2	24
59	Effect of plant-mediated oxygen supply and drainage on greenhouse gas emission from a tropical peatland in Central Kalimantan, Indonesia. Soil Science and Plant Nutrition, 2014, 60, 216-230.	0.8	24
60	Flood effect on CH ₄ emission from the alas in Central Yakutia, East Siberia. Soil Science and Plant Nutrition, 2014, 60, 242-253.	0.8	10
61	Simulation of stream nitrate-nitrogen export using the Soil and Water Assessment Tool model in a dairy farming watershed with an external water source. Journal of Soils and Water Conservation, 2014, 69, 75-85.	0.8	6
62	A methanotrophic community in a tropical peatland is unaffected by drainage and forest fires in a tropical peat soil. Soil Science and Plant Nutrition, 2014, 60, 577-585.	0.8	48
63	Real time monitoring of gases emitted from soils using a multi-turn time-of-flight mass spectrometer "MULTUM-S Ilâ€: Environmental Sciences: Processes and Impacts, 2014, 16, 2752-2757.	1.7	5
64	Seasonal carbon dynamics and the effects of manure application on carbon budget of a managed grassland in a temperate, humid region in <scp>J</scp> apan. Grassland Science, 2014, 60, 76-91.	0.6	14
65	Land use change affects microbial biomass and fluxes of carbon dioxide and nitrous oxide in tropical peatlands. Soil Science and Plant Nutrition, 2014, 60, 423-434.	0.8	30
66	Factors controlling nitrogen and dissolved organic carbon exports across timescales in two watersheds with different land uses. Hydrological Processes, 2014, 28, 5105-5121.	1.1	28
67	Mitigation Effect of Farmyard Manure Application on Greenhouse Gas Emissions from Managed Grasslands in Japan. , 2014, , 313-325.		3
68	Effects of methyl viologen dichloride and other chemicals on nitrous oxide (N ₂ O) emission and repression by pseudomonad denitrifiers isolated from corn farmland soil in Hokkaido, Japan. Journal of Pesticide Sciences, 2014, 39, 115-120.	0.8	7
69	Soil CO2 Fluxes from Different Ages of Oil Palm in Tropical Peatland of Sarawak, Malaysia. , 2014, , 447-455.		1
70	Characteristics of fire-generated gas emission observed during a large peatland fire in 2009 at Kalimantan, Indonesia. Atmospheric Environment, 2013, 74, 177-181.	1.9	21
71	Carbon dioxide exchange at four intensively managed grassland sites across different climate zones of Japan and the influence of manure application on ecosystem carbon and greenhouse gas budgets. Agricultural and Forest Meteorology, 2013, 177, 57-68.	1.9	31
72	The effect of fertilizer and manure application on CH ₄ and N ₂ O emissions from managed grasslands in Japan. Soil Science and Plant Nutrition, 2013, 59, 69-86.	0.8	36

#	Article	IF	CITATIONS
73	Soil carbon stocks and carbon sequestration rates in seminatural grassland in Aso region, Kumamoto, Southern Japan. Global Change Biology, 2013, 19, 1676-1687.	4.2	21
74	SOIL CO2 FLUXES FROM DIFFERENT AGES OF OIL PALM IN TROPICAL PEATLAND OF SARAWAK, MALAYSIA AS INFLUENCED BY ENVIRONMENTAL AND SOIL PROPERTIES. Acta Horticulturae, 2013, , 25-35.	0.1	28
75	Single and Sequential Extraction of Cadmium in Some Highly Calcareous Soils of Southwestern Iran. Journal of Soil Science and Plant Nutrition, 2013, , 0-0.	1.7	4
76	Soil greenhouse gas fluxes and net global warming potential from intensively cultivated vegetable fields in southwestern China. Journal of Soil Science and Plant Nutrition, 2013, , 0-0.	1.7	7
77	N ₂ O emissions during the freezing and thawing periods from six fields in a livestock farm, southern Hokkaido, Japan. Soil Science and Plant Nutrition, 2012, 58, 261-271.	0.8	25
78	Influence of Agricultural Activity on Nitrogen Budget in Chinese and Japanese Watersheds. Pedosphere, 2012, 22, 137-151.	2.1	13
79	Coupled control of land use and topography on nitrate-nitrogen dynamics in three adjacent watersheds. Catena, 2012, 97, 1-11.	2.2	19
80	Spatial variation of denitrification potential of grassland, windbreak forest, and riparian forest soils in an agricultural catchment in eastern Hokkaido, Japan. Ecological Engineering, 2012, 47, 92-100.	1.6	31
81	Active N ₂ O emission from bacterial microbiota of Andisol farmland and characterization of some N ₂ O emitters. Journal of Basic Microbiology, 2012, 52, 477-486.	1.8	13
82	Simulated nitrogen inputs influence methane and nitrous oxide fluxes from a young larch plantation in northern Japan. Atmospheric Environment, 2012, 46, 36-44.	1.9	32
83	Comparisons of energy balance and evapotranspiration between flooded and aerobic rice fields in the Philippines. Agricultural Water Management, 2011, 98, 1417-1430.	2.4	124
84	Carbon budget and methane and nitrous oxide emissions over the growing season in a Miscanthus sinensis grassland in Tomakomai, Hokkaido, Japan. GCB Bioenergy, 2011, 3, 116-134.	2.5	34
85	Nitrous oxide emission derived from soil organic matter decomposition from tropical agricultural peat soil in central Kalimantan, Indonesia. Soil Science and Plant Nutrition, 2011, 57, 436-451.	0.8	43
86	Greenhouse gas emissions after a prescribed fire in white birch-dwarf bamboo stands in northern Japan, focusing on the role of charcoal. European Journal of Forest Research, 2011, 130, 1031-1044.	1.1	22
87	Effects of soil aggregate size, moisture content and fertilizer management on nitrous oxide production in a volcanic ash soil. Soil Science and Plant Nutrition, 2011, 57, 733-747.	0.8	26
88	Modeling the Water Balance Processes for Understanding the Components of River Discharge in a Non-conservative Watershed. Transactions of the ASABE, 2011, 54, 2171-2180.	1.1	19
89	Greenhouse Gas Fluxes: Effects of Physical Conditions. Encyclopedia of Earth Sciences Series, 2011, , 339-351.	0.1	0
90	Eco-balance analysis of land use combinations to minimize environmental impacts and maximize farm income in northern Japan. Sustainability Science, 2010, 5, 19-27.	2.5	5

#	Article	IF	CITATIONS
91	Soil and stream water acidification in a forested catchment in central Japan. Biogeochemistry, 2010, 97, 141-158.	1.7	42
92	Comparison of N2O and CO2concentrations and fluxes in the soil profile between a Gray Lowland soil and an Andosol. Soil Science and Plant Nutrition, 2010, 56, 186-199.	0.8	36
93	Effect of chemical fertilizer and manure application on N ₂ 0 emission from reed canary grassland in Hokkaido, Japan. Soil Science and Plant Nutrition, 2010, 56, 53-65.	0.8	44
94	Effects of changes in the soil environment associated with heavy precipitation on soil greenhouse gas fluxes in a Siberian larch forest near Yakutsk. Soil Science and Plant Nutrition, 2010, 56, 645-662.	0.8	19
95	Effects of environmental factors on temporal variation in annual carbon dioxide and nitrous oxide emissions from an unfertilized bare field on Gray Lowland soil in Mikasa, Hokkaido, Japan. Soil Science and Plant Nutrition, 2010, 56, 663-675.	0.8	13
96	Nitrous oxide emissions and nitrogen cycling in managed grassland in Southern Hokkaido, Japan. Soil Science and Plant Nutrition, 2010, 56, 676-688.	0.8	20
97	Clear increases in acetylene reduction by soil bacteria from an East Siberian Taiga forest bed under conditions mimicking the natural soil environment. Soil Science and Plant Nutrition, 2010, 56, 716-724.	0.8	6
98	Variation of Soil Respiration from Different Land Uses in Subtropical Agricultural Soils, Central China. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	0
99	Hydrological process controls on nitrogen export during storm events in an agricultural watershed. Soil Science and Plant Nutrition, 2010, 56, 72-85.	0.8	44
100	Diffusivity Models and Greenhouse Gases Fluxes from a Forest, Pasture, Grassland and Corn Field in Northern Hokkaido, Japan. Pedosphere, 2010, 20, 747-760.	2.1	15
101	High Rate of N 2 Fixation by East Siberian Cryophilic Soil Bacteria as Determined by Measuring Acetylene Reduction in Nitrogen-Poor Medium Solidified with Gellan Gum. Applied and Environmental Microbiology, 2009, 75, 2811-2819.	1.4	35
102	Linking N2O emission to soil mineral N as estimated by CO2 emission and soil C/N ratio. Soil Biology and Biochemistry, 2009, 41, 2593-2597.	4.2	23
103	Characteristics and issues related to regional-scale modeling of nitrogen flows. Soil Science and Plant Nutrition, 2009, 55, 1-12.	0.8	20
104	CH ₄ emission from different stages of thermokarst formation in Central Yakutia, East Siberia. Soil Science and Plant Nutrition, 2009, 55, 558-570.	0.8	38
105	New method for the estimation of nitrous oxide emission rates from an agricultural watershed. Soil Science and Plant Nutrition, 2009, 55, 590-598.	0.8	1
106	Nitrogen budget and relationships with riverine nitrogen exports of a dairy cattle farming catchment in eastern Hokkaido, Japan. Soil Science and Plant Nutrition, 2009, 55, 800-819.	0.8	29
107	The effect of manure application on carbon dynamics and budgets in a managed grassland of Southern Hokkaido, Japan. Agriculture, Ecosystems and Environment, 2009, 130, 31-40.	2.5	64
108	CO2 emission in a subtropical red paddy soil (Ultisol) as affected by straw and N-fertilizer applications: A case study in Southern China. Agriculture, Ecosystems and Environment, 2009, 131, 292-302.	2.5	132

#	Article	IF	CITATIONS
109	Assessment of river water quality during snowmelt and base flow periods in two catchment areas with different land use. Environmental Monitoring and Assessment, 2008, 137, 251-260.	1.3	21
110	Assessing the impact of phosphorus cycling on river water P concentration in Hokkaido. Soil Science and Plant Nutrition, 2008, 54, 310-317.	0.8	4
111	N ₂ O and CH ₄ fluxes from a volcanic grassland soil in Nasu, Japan: Comparison between manure plus fertilizer plot and fertilizer-only plot. Soil Science and Plant Nutrition, 2008, 54, 606-617.	0.8	22
112	Evaluation of the soil carbon budget under different upland cropping systems in central Hokkaido, Japan. Soil Science and Plant Nutrition, 2008, 54, 650-661.	0.8	21
113	Nitrous oxide and nitric oxide fluxes from cornfield, grassland, pasture and forest in a watershed in Southern Hokkaido, Japan. Soil Science and Plant Nutrition, 2008, 54, 662-680.	0.8	20
114	Comparison of the closed-chamber and gas concentration gradient methods for measurement of CO ₂ and N ₂ O fluxes in two upland field soils. Soil Science and Plant Nutrition, 2008, 54, 777-785.	0.8	37
115	Influence of forest disturbance on CO ₂ , CH ₄ and N ₂ O fluxes from larch forest soil in the permafrost taiga region of eastern Siberia. Soil Science and Plant Nutrition, 2008, 54, 938-949.	0.8	38
116	Nitrous oxide fluxes from upland soils in central Hokkaido, Japan. Journal of Environmental Sciences, 2008, 20, 1312-1322.	3.2	20
117	Emergence and behaviors of acid-tolerant Janthinobacterium sp. that evolves N2O from deforested tropical peatland. Soil Biology and Biochemistry, 2008, 40, 116-125.	4.2	35
118	CH ₄ and N ₂ O emissions from a forestâ€alas ecosystem in the permafrost taiga forest region, eastern Siberia, Russia. Journal of Geophysical Research, 2008, 113, .	3.3	58
119	Analysis of the C2H2 inhibition-based N2O production curve to characterize the N2O-reducing activity of denitrifying communities in soil. Geoderma, 2008, 146, 269-276.	2.3	15
120	Falling atmospheric pressure as a trigger for methane ebullition from peatland. Global Biogeochemical Cycles, 2007, 21, n/a-n/a.	1.9	159
121	An eco-balance approach to the evaluation of historical changes in nitrogen loads at a regional scale. Agricultural Systems, 2007, 94, 165-176.	3.2	20
122	Episodic release of methane bubbles from peatland during spring thaw. Chemosphere, 2007, 70, 165-171.	4.2	70
123	Methane emissions from five paddy fields with different amounts of rice straw application in central Hokkaido, Japan. Soil Science and Plant Nutrition, 2007, 53, 95-101.	0.8	137
124	Effect of crop residue C:N ratio on N2O emissions from Gray Lowland soil in Mikasa, Hokkaido, Japan. Soil Science and Plant Nutrition, 2007, 53, 198-205.	0.8	134
125	Eco-balance analysis of six agricultural land uses in the Ikushunbetsu watershed. Soil Science and Plant Nutrition, 2007, 53, 373-386.	0.8	8
126	Variation in the emission factor of N2O derived from chemical nitrogen fertilizer and organic matter: A case study of onion fields in Mikasa, Hokkaido, Japan. Soil Science and Plant Nutrition, 2007, 53, 692-703.	0.8	32

#	Article	IF	CITATIONS
127	Nitrous oxide emissions from three ecosystems in tropical peatland of Sarawak, Malaysia. Soil Science and Plant Nutrition, 2007, 53, 792-805.	0.8	62
128	Fungal N ₂ O production in an arable peat soil in Central Kalimantan, Indonesia. Soil Science and Plant Nutrition, 2007, 53, 806-811.	0.8	55
129	Nitrogen Flow in the Rural Ecosystem of Mikasa City in Hokkaido, Japan. Pedosphere, 2006, 16, 264-272.	2.1	3
130	Evaluating Stream Water Quality through Land Use Analysis in Two Grassland Catchments. Journal of Environmental Quality, 2006, 35, 617-627.	1.0	49
131	Three years of nitrous oxide and nitric oxide emissions from silandic andosols cultivated with maize in Hokkaido, Japan. Soil Science and Plant Nutrition, 2006, 52, 103-113.	0.8	36
132	Estimation of global warming potential from upland cropping systems in central Hokkaido, Japan. Soil Science and Plant Nutrition, 2006, 52, 371-377.	0.8	29
133	Effects of agricultural land-use change and forest fire on N2O emission from tropical peatlands, Central Kalimantan, Indonesia. Soil Science and Plant Nutrition, 2006, 52, 662-674.	0.8	84
134	Short-term effect of urea on CH4flux under the oil palm (Elaeis guineensis) on tropical peatland in Sarawak, Malaysia. Soil Science and Plant Nutrition, 2006, 52, 788-792.	0.8	8
135	Soil CO2 flux from three ecosystems in tropical peatland of Sarawak, Malaysia. Tellus, Series B: Chemical and Physical Meteorology, 2005, 57, 1-11.	0.8	99
136	Impact of nitrogen cycling on stream water quality in a basin associated with forest, grassland, and animal husbandry, Hokkaido, Japan. Ecological Engineering, 2005, 24, 509-515.	1.6	21
137	Soil CO2 flux from three ecosystems in tropical peatland of Sarawak, Malaysia. Tellus, Series B: Chemical and Physical Meteorology, 2005, 57, 1-11.	0.8	89
138	Methane fluxes from three ecosystems in tropical peatland of Sarawak, Malaysia. Soil Biology and Biochemistry, 2005, 37, 1445-1453.	4.2	120
139	Nitrogen Cycling with Respect to Environmental Load in Farm Systems in Southwest China. Nutrient Cycling in Agroecosystems, 2005, 73, 119-134.	1.1	17
140	Influence of long-term changes in nitrogen flows on the environment: A case study of a city in Hokkaido, Japan. Nutrient Cycling in Agroecosystems, 2005, 70, 271-282.	1.1	1
141	Evaluating river water quality through land use analysis and N budget approaches in livestock farming areas. Science of the Total Environment, 2004, 329, 61-74.	3.9	123
142	Influence of long-term changes in nitrogen flows on the environment: a case study of a city in Hokkaido, Japan. Nutrient Cycling in Agroecosystems, 2004, 70, 271-282.	1.1	12
143	Effect of nitrogen deposition on CH ⁴ uptake in forest soils in Hokkaido, Japan. Soil Science and Plant Nutrition, 2004, 50, 1187-1194.	0.8	22
144	Evaluating the contribution of point and non-point sources of nitrogen pollution in stream water in a rural area of Central Hokkaido, Japan. Soil Science and Plant Nutrition, 2004, 50, 109-117.	0.8	10

#	Article	IF	CITATIONS
145	Soil respiration and net ecosystem production in an onion field in Central Hokkaido, Japan. Soil Science and Plant Nutrition, 2004, 50, 27-33.	0.8	42
146	Evaluation of the impact of paddy fields on stream water nitrogen concentration in Central Hokkaido. Soil Science and Plant Nutrition, 2004, 50, 45-55.	0.8	7
147	A comparison of regression methods for estimating soil–atmosphere diffusion gas fluxes by a closed-chamber technique. Soil Biology and Biochemistry, 2004, 36, 107-113.	4.2	71
148	CH4flux in an alas ecosystem formed by forest disturbance near Yakutsk, Eastern Siberia, Russia. Soil Science and Plant Nutrition, 2003, 49, 369-377.	0.8	24
149	Changes in net ecosystem production associated with forest fire in taiga ecosystems, near Yakutsk, Russia. Soil Science and Plant Nutrition, 2003, 49, 493-501.	0.8	10
150	Quantification of compaction effects on soil physical properties and crop growth. Geoderma, 2003, 116, 107-136.	2.3	386
151	Spatial variation in nitrogen deposition over five adjacent catchments in a larch forest. Soil Science and Plant Nutrition, 2003, 49, 741-746.	0.8	3
152	Dissolved N ₂ O, CH ₄ , and CO ₂ emissions from subsurface-drainage in a structured clay soil cultivated with onion in Central Hokkaido, Japan. Soil Science and Plant Nutrition, 2003, 49, 31-38.	0.8	20
153	Characteristics of nutrient load in a stream flowing through a livestock farm during spring snowmelt. Soil Science and Plant Nutrition, 2003, 49, 301-305.	0.8	6
154	Spatial Variability of Nitrous Oxide Emissions and Their Soilâ€Related Determining Factors in an Agricultural Field. Journal of Environmental Quality, 2003, 32, 1965-1977.	1.0	113
155	Magnitude of nitrogen pollution in stream water due to intensive livestock farming practices. Soil Science and Plant Nutrition, 2002, 48, 883-887.	0.8	10
156	Effect of nitrogen fertilization on methane flux in a structured clay soil cultivated with onion in Central Hokkaido, Japan. Soil Science and Plant Nutrition, 2002, 48, 797-804.	0.8	11
157	Dissolved N ₂ 0, CH ₄ , and CO ₂ in pipe drainage, seepage, and stream water in a livestock farm in Hokkaido, Japan. Soil Science and Plant Nutrition, 2002, 48, 433-439.	0.8	22
158	Evaluating impact of land use and N budgets on stream water quality in Hokkaido, Japan. Nutrient Cycling in Agroecosystems, 2002, 63, 175-184.	1.1	28
159	Title is missing!. Nutrient Cycling in Agroecosystems, 2002, 63, 139-149.	1.1	32
160	Title is missing!. Nutrient Cycling in Agroecosystems, 2002, 63, 239-247.	1.1	41
161	Title is missing!. Water, Air, and Soil Pollution, 2001, 130, 691-696.	1.1	3
162	Significance of nitrification and vegetation uptake in proton budgets in forest surface soil. Soil Science and Plant Nutrition, 2001, 47, 253-264.	0.8	4

#	Article	IF	CITATIONS
163	Importance of Internal Proton Production for the Proton Budget in Japanese Forested Ecosystems. Water, Air, and Soil Pollution, 2001, 130, 685-690.	1.1	15
164	Analysis of Proton Generation and Consumption of Forest Surface Soils in Hokkaido, Northern Japan. Water, Air, and Soil Pollution, 2001, 130, 697-702.	1.1	1
165	Soil respiration and methane flux in adjacent forest, grassland, and cornfield soils in Hokkaido, Japan. Soil Science and Plant Nutrition, 2001, 47, 621-627.	0.8	28
166	Detection of nitrate leaching through bypass flow using pan lysimeter, suction cup, and resin capsule. Soil Science and Plant Nutrition, 2000, 46, 703-711.	0.8	28
167	Soil respiration in Siberian Taiga ecosystems with different histories of forest fire. Soil Science and Plant Nutrition, 2000, 46, 31-42.	0.8	50
168	Annual nitrogen leaching to subsurface drainage water from a clayey aquic soil cultivated with onions in Hokkaido, Japan. Soil Science and Plant Nutrition, 1999, 45, 451-459.	0.8	35
169	Title is missing!. , 1998, 50, 267-269.		0
170	Proton Budgets of Forest Ecosystems on Volcanogenous Regosols in Hokkaido, Northern Japan. Water, Air, and Soil Pollution, 1998, 105, 63-72.	1.1	38
171	The fractal dimension of pore distribution patterns in variously-compacted soil. Soil and Tillage Research, 1998, 47, 61-66.	2.6	50
172	Regression model to predict travel time for chloride leaching through pedons using soil morphological characteristics. , 1998, , 267-269.		0
173	Emission of N2O from a clayey aquic soil cultivated with Onion plants. , 1997, , 555-556.		5
174	A morphological approach to describe solute movement influenced by bypass flow in a structured clay soil. Soil Science and Plant Nutrition, 1994, 40, 573-580.	0.8	1
175	Effects of soil structural discontinuity on root and shoot growth and water use of maize. Plant and Soil, 1993, 157, 65-74.	1.8	17
176	Measurement and simulation of bypass flow in a structured clay soil: a physico-morphological approach. Journal of Hydrology, 1993, 148, 149-168.	2.3	56
177	Diffusion processes in water saturated spherical soil aggregates. Soil Science and Plant Nutrition, 1993, 39, 245-255.	0.8	2
178	Evaluation of the effect of morphological features of flow paths on solute transport by using fractal dimensions of methylene blue staining pattern. Geoderma, 1992, 53, 31-44.	2.3	70
179	Using fractal dimensions of stained flow patterns in a clay soil to predict bypass flow. Journal of Hydrology, 1992, 135, 121-131.	2.3	56
180	A plate model for solute transport through aggregated soil columns. I. Theoretical description. Geoderma, 1991, 50, 13-23.	2.3	8

#	Article	IF	CITATIONS
181	A plate model for solute transport through aggregated soil columns. II. Experimental results and application of the model. Geoderma, 1991, 50, 25-36.	2.3	5
182	Relationship between the distribution of soil macropores and root elongation. Soil Science and Plant Nutrition, 1988, 34, 535-546.	0.8	51
183	Evapotranspiration in cracked clay field soil. Soil Science and Plant Nutrition, 1988, 34, 547-555.	0.8	11
184	The Source-Sink Effect of Clayey Soil Peds on Solute Transport. Soil Science and Plant Nutrition, 1985, 31, 199-213.	0.8	10
185	Factors impacting soil organic carbon pool in different types of Andosols in Toya, Hokkaido, Japan. Soil Science and Plant Nutrition, 0, , 1-12.	0.8	0