
Yingxin Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3478010/publications.pdf Version: 2024-02-01

ΥΙΝΟΧΙΝ ΖΗΛΟ

#	Article	IF	CITATIONS
1	Bio-immobilization and recovery of chromium using a denitrifying biofilm system: Identification of reaction zone, binding forms and end products. Journal of Environmental Sciences, 2023, 126, 70-80.	6.1	11
2	Normal temperature catalytic degradation of toluene over Pt/TiO ₂ . Environmental Technology (United Kingdom), 2022, 43, 2047-2058.	2.2	10
3	Microplastic abundance, characteristics and removal in large-scale multi-stage constructed wetlands for effluent polishing in northern China. Chemical Engineering Journal, 2022, 430, 132752.	12.7	45
4	Application oriented bioaugmentation processes: Mechanism, performance improvement and scale-up. Bioresource Technology, 2022, 344, 126192.	9.6	30
5	Formation of trihalomethanes and haloacetic acids from 2,6-dichloro-1,4-benzoquinone during chlorination: Decomposition kinetics, conversion rates, and pathways. Chemosphere, 2022, 291, 132729.	8.2	12
6	Fabrication of Pd/Sludge-biochar electrode with high electrochemical activity on reductive degradation of 4-chlorophenol in wastewater. Environmental Research, 2022, 209, 112740.	7.5	7
7	Impact of dissolved organic matter and environmental factors on methylmercury concentrations across aquatic ecosystems inferred from a global dataset. Chemosphere, 2022, 294, 133713.	8.2	9
8	Bio-capture of Cr(VI) in a denitrification system: Electron competition, long-term performance, and microbial community evolution. Journal of Hazardous Materials, 2022, 432, 128697.	12.4	19
9	Reinforcement of denitrification in a biofilm electrode reactor with immobilized polypyrrole/anthraquinone-2,6-disulfonate composite cathode. Journal of Environmental Management, 2022, 315, 115203.	7.8	2
10	A new insight to explore toxic Cd(II) affecting denitrification: Reaction kinetic, electron behavior and microbial community. Chemosphere, 2022, 305, 135419.	8.2	8
11	Biotransformation of 4-Hydroxybenzoic Acid under Nitrate-Reducing Conditions in a MEC Bioanode. Environmental Science & Technology, 2021, 55, 2067-2075.	10.0	12
12	Optimization of electrocoagulation process parameters for enhancing phosphate removal in a biofilm-electrocoagulation system. Water Science and Technology, 2021, 83, 2560-2574.	2.5	11
13	Challenges and opportunities for the biodegradation of chlorophenols: Aerobic, anaerobic and bioelectrochemical processes. Water Research, 2021, 193, 116862.	11.3	66
14	Global trends and prospects in the removal of pharmaceuticals and personal care products: A bibliometric analysis. Journal of Water Process Engineering, 2021, 41, 102004.	5.6	5
15	Rapid recovery of inhibited denitrification with cascade Cr(VI) exposure by bio-accelerant: Characterization of chromium distributions, EPS compositions and denitrifying communities. Journal of Hazardous Materials, 2021, 411, 125087.	12.4	44
16	Trichloroethylene dechlorination rates, pathways, and efficiencies of ZVMg/C in aqueous solution. Journal of Hazardous Materials, 2021, 417, 125993.	12.4	4
17	Application of different redox mediators induced bio-promoters to accelerate the recovery of denitrification and denitrifying functional microorganisms inhibited by transient Cr(VI) shock. Journal of Hazardous Materials, 2021, 420, 126664.	12.4	16
18	"Self-degradation―of 2-chlorophenol in a sequential cathode-anode cascade mode bioelectrochemical system. Water Research, 2021, 206, 117740.	11.3	16

YINGXIN ZHAO

#	Article	IF	CITATIONS
19	Simultaneous removal of COD, nitrogen and phosphorus and the tridimensional microbial response in a sequencing batch biofilm reactor: with varying C/N/P ratios. Biochemical Engineering Journal, 2020, 154, 107215.	3.6	30
20	Recovery behavior of high ammonium inhibition in a sequencing batch biofilm reactor. Bioresource Technology Reports, 2020, 9, 100315.	2.7	1
21	Application of aerobic granules-continuous flow reactor for saline wastewater treatment: Granular stability, lipid production and symbiotic relationship between bacteria and algae. Bioresource Technology, 2020, 295, 122291.	9.6	78
22	Shift of bacterial community and denitrification functional genes in biofilm electrode reactor in response to high salinity. Environmental Research, 2020, 184, 109007.	7.5	34
23	A novel red mud adsorbent for phosphorus and diclofenac removal from wastewater. Journal of Molecular Liquids, 2020, 303, 112286.	4.9	44
24	Bioelectrochemical degradation of monoaromatic compounds: Current advances and challenges. Journal of Hazardous Materials, 2020, 398, 122892.	12.4	62
25	A Monte Carlo-based integrated model to optimize the cost and pollution reduction in wastewater treatment processes in a typical comprehensive industrial park in China. Science of the Total Environment, 2019, 647, 1-10.	8.0	34
26	Insights into biofilm carriers for biological wastewater treatment processes: Current state-of-the-art, challenges, and opportunities. Bioresource Technology, 2019, 288, 121619.	9.6	146
27	Singlet oxygen dominated peroxymonosulfate activation by CuO-CeO2 for organic pollutants degradation: Performance and mechanism. Chemosphere, 2019, 233, 549-558.	8.2	77
28	Assessment of four sewage sludge treatment routes with efficient biogas utilization and heat integration. Chemical Engineering Research and Design, 2019, 126, 205-213.	5.6	9
29	Volcanic rockâ€based ceramsite adsorbent for highly selective fluoride removal: function optimization and mechanism. Journal of Chemical Technology and Biotechnology, 2019, 94, 2263-2273.	3.2	6
30	A dicyclic-type electrode-based biofilm reactor for simultaneous nitrate and Cr(VI) reduction. Bioprocess and Biosystems Engineering, 2019, 42, 167-172.	3.4	6
31	Impact of hydraulic retention time and current on the microbial community and denitrification genes in a continuousâ€flow biofilm electrode reactor. Journal of Chemical Technology and Biotechnology, 2019, 94, 933-941.	3.2	10
32	Process intensification of cellulosic ethanol production by waste heat integration. Chemical Engineering Research and Design, 2018, 132, 115-122.	5.6	15
33	Biosynthesis of copper nanoparticles using Shewanella loihica PV-4 with antibacterial activity: Novel approach and mechanisms investigation. Journal of Hazardous Materials, 2018, 347, 141-149.	12.4	157
34	Effects of salinity and COD/N on denitrification and bacterial community in dicyclic-type electrode based biofilm reactor. Chemosphere, 2018, 192, 328-336.	8.2	56
35	Simultaneous removal of nitrate and chromate in groundwater by a spiral fiber based biofilm reactor. Bioresource Technology, 2017, 232, 278-284.	9.6	28
36	Recovery of nitrification in cadmium-inhibited activated sludge system by bio-accelerators. Bioresource Technology, 2016, 200, 812-819.	9.6	27

Yingxin Zhao

#	Article	IF	CITATIONS
37	Adsorption behavior and mechanism of Cr(VI) using Sakura waste from aqueous solution. Applied Surface Science, 2016, 360, 470-476.	6.1	90
38	Highly Efficient Adsorption of Cr(VI) by Sakura Leaves from Aqueous Solution. Chemistry Letters, 2015, 44, 697-699.	1.3	8
39	Behavior of Cr(VI) removal from wastewater by adsorption onto HCl activated Akadama clay. Journal of the Taiwan Institute of Chemical Engineers, 2015, 50, 190-197.	5.3	29
40	Effective adsorption of Cr(VI) on mesoporous Fe-functionalized Akadama clay: Optimization, selectivity, and mechanism. Applied Surface Science, 2015, 344, 128-136.	6.1	58
41	Nitrification recovery behavior by bio-accelerators in copper-inhibited activated sludge system. Bioresource Technology, 2015, 192, 748-755.	9.6	19
42	Degradation of microcystin-LR by highly efficient AgBr/Ag3PO4/TiO2 heterojunction photocatalyst under simulated solar light irradiation. Applied Surface Science, 2015, 325, 1-12.	6.1	49
43	An electrochemically modified novel tablet porous material developed as adsorbent for phosphate removal from aqueous solution. Chemical Engineering Journal, 2013, 220, 367-374.	12.7	25
44	Adsorption of high ammonium nitrogen from wastewater using a novel ceramic adsorbent and the evaluation of the ammonium-adsorbed-ceramic as fertilizer. Journal of Colloid and Interface Science, 2013, 393, 264-270.	9.4	62
45	Investigation of phosphate adsorption from aqueous solution using Kanuma mud: Behaviors and mechanisms. Journal of Environmental Chemical Engineering, 2013, 1, 355-362.	6.7	40
46	Characteristics of heterotrophic/biofilm-electrode autotrophic denitrification for nitrate removal from groundwater. Bioresource Technology, 2013, 148, 121-127.	9.6	89
47	Adsorption of cesium from aqueous solution using agricultural residue – Walnut shell: Equilibrium, kinetic and thermodynamic modeling studies. Water Research, 2013, 47, 2563-2571.	11.3	240
48	Effective adsorption of Cr (VI) from aqueous solution using natural Akadama clay. Journal of Colloid and Interface Science, 2013, 395, 198-204.	9.4	94
49	Behavior of autotrophic denitrification and heterotrophic denitrification in an intensified biofilm-electrode reactor for nitrate-contaminated drinking water treatment. Bioresource Technology, 2012, 107, 159-165.	9.6	108
50	Nitrate removal from groundwater by cooperating heterotrophic with autotrophic denitrification in a biofilm–electrode reactor. Journal of Hazardous Materials, 2011, 192, 1033-1039.	12.4	176
51	Domestic sewage treatment in a sequencing batch biofilm reactor (SBBR) with an intelligent controlling system. Desalination, 2011, 276, 260-265.	8.2	52
52	Denitrification of nitrate contaminated groundwater with a fiber-based biofilm reactor. Bioresource Technology, 2009, 100, 2223-2227.	9.6	133
53	Spatial distribution and comprehensive evaluation of emerging organic pollutants in effluents from wastewater treatment plants in northern cities of China. , 0, 156, 20-31.		6