Janeck James Scott-Fordsmand

List of Publications by Year in Descending Order

 $\textbf{Source:} \ https://exaly.com/author-pdf/3477552/janeck-james-scott-fordsmand-publications-by-year.pdf$

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

127 papers 3,611 citations

34 h-index 53 g-index

136 ext. papers

4,117 ext. citations

7.1 avg, IF

5.63 L-index

#	Paper	IF	Citations
127	Nano-pesticides: the lunch-box principle-deadly goodies (semio-chemical functionalised nanoparticles that deliver pesticide only to target species) <i>Journal of Nanobiotechnology</i> , 2022 , 20, 13	9.4	1
126	The Curious Case of Earthworms and COVID-19. <i>Biology</i> , 2021 , 10,	4.9	1
125	Nanopharmaceuticals (Au-NPs) after use: Experiences with a complex higher tier test design simulating environmental fate and effect. <i>Ecotoxicology and Environmental Safety</i> , 2021 , 227, 112949	7	O
124	Bridging international approaches on nanoEHS. <i>Nature Nanotechnology</i> , 2021 , 16, 608-611	28.7	3
123	Confirmatory assays for transient changes of omics in soil invertebrates - Copper materials in a multigenerational exposure. <i>Journal of Hazardous Materials</i> , 2021 , 402, 123500	12.8	7
122	Ecotoxicological and regulatory aspects of environmental sustainability of nanopesticides. <i>Journal of Hazardous Materials</i> , 2021 , 404, 124148	12.8	37
121	Machine learning and materials modelling interpretation of toxicological response to TiO nanoparticles library (UV and non-UV exposure). <i>Nanoscale</i> , 2021 , 13, 14666-14678	7.7	2
120	Toxicokinetics of Ag (nano)materials in the soil model Enchytraeus crypticus (Oligochaeta) [Impact of aging and concentration. <i>Environmental Science: Nano</i> , 2021 , 8, 2629-2640	7.1	2
119	Embryotoxicity of silver nanomaterials (Ag NM300k) in the soil invertebrate Enchytraeus crypticus - Functional assay detects Ca channels shutdown <i>NanoImpact</i> , 2021 , 21, 100300	5.6	1
118	Plastic pollution - A case study with Enchytraeus crypticus - From micro-to nanoplastics. <i>Environmental Pollution</i> , 2021 , 271, 116363	9.3	7
117	Annelid genomes: Enchytraeus crypticus, a soil model for the innate (and primed) immune system. <i>Lab Animal</i> , 2021 , 50, 285-294	0.4	3
116	Alternative test methods for (nano)materials hazards assessment: Challenges and recommendations for regulatory preparedness. <i>Nano Today</i> , 2021 , 40, 101242	17.9	4
115	Multiomics assessment in Enchytraeus crypticus exposed to Ag nanomaterials (Ag NM300K) and ions (AgNO) - Metabolomics, proteomics (& transcriptomics). <i>Environmental Pollution</i> , 2021 , 286, 11757	19.3	5
114	Developing an epigenetics model species - From blastula to mature adult, life cycle methylation profile of Enchytraeus crypticus (Oligochaete). <i>Science of the Total Environment</i> , 2020 , 732, 139079	10.2	4
113	Multigenerational Exposure to WCCo Nanomaterials-Epigenetics in the Soil Invertebrate. <i>Nanomaterials</i> , 2020 , 10,	5.4	7
112	Epigenetic effects of (nano)materials in environmental species - Cu case study in Enchytraeus crypticus. <i>Environment International</i> , 2020 , 136, 105447	12.9	23
111	Novel understanding of toxicity in a life cycle perspective - The mechanisms that lead to population effect - The case of Ag (nano)materials. <i>Environmental Pollution</i> , 2020 , 262, 114277	9.3	12

(2018-2020)

110	The toxicity of silver nanomaterials (NM 300K) is reduced when combined with N-Acetylcysteine: Hazard assessment on Enchytraeus crypticus. <i>Environmental Pollution</i> , 2020 , 256, 113484	9.3	7
109	Risk Management Framework for Nano-Biomaterials Used in Medical Devices and Advanced Therapy Medicinal Products. <i>Materials</i> , 2020 , 13,	3.5	11
108	Selection of an optimal culture medium and the most responsive viability assay to assess AgNPs toxicity with primary cultures of Eisenia fetida coelomocytes. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 183, 109545	7	10
107	On the safety of nanoformulations to non-target soil invertebrates han atrazine case study. <i>Environmental Science: Nano</i> , 2019 , 6, 1950-1958	7.1	18
106	Assessing the toxicity of safer by design CuO surface-modifications using terrestrial multispecies assays. <i>Science of the Total Environment</i> , 2019 , 678, 457-465	10.2	7
105	Strategies for robust and accurate experimental approaches to quantify nanomaterial bioaccumulation across a broad range of organisms. <i>Environmental Science: Nano</i> , 2019 , 6,	7.1	26
104	Multigenerational exposure to cobalt (CoCl) and WCCo nanoparticles in. <i>Nanotoxicology</i> , 2019 , 13, 751-	7 <u>6</u> .6	9
103	Cell Testing with Soil Invertebrates-Challenges and Opportunities toward Modeling the Effect of Nanomaterials: A Surface-Modified CuO Case Study. <i>Nanomaterials</i> , 2019 , 9,	5.4	7
102	High-throughput transcriptomics: Insights into the pathways involved in (nano) nickel toxicity in a key invertebrate test species. <i>Environmental Pollution</i> , 2019 , 245, 131-140	9.3	20
101	High-throughput tool to discriminate effects of NMs (Cu-NPs, Cu-nanowires, CuNO, and Cu salt aged): transcriptomics in Enchytraeus crypticus. <i>Nanotoxicology</i> , 2018 , 12, 325-340	5.3	22
100	Interactions of Soil Species Exposed to CuO NMs are Different From Cu Salt: A Multispecies Test. <i>Environmental Science & Environmental Science & Envi</i>	10.3	17
99	Environmental Impacts by Fragments Released from Nanoenabled Products: A Multiassay, Multimaterial Exploration by the SUN Approach. <i>Environmental Science & Environmental Environ</i>	14-9:32	4 ³⁰
98	Implementing the DF4 in a robust model, allowing for enhanced comparison, prioritisation and grouping of Nanomaterials. <i>Regulatory Toxicology and Pharmacology</i> , 2018 , 92, 207-212	3.4	6
97	Environmental fate and effect of biodegradable electro-spun scaffolds (biomaterial)-a case study. Journal of Materials Science: Materials in Medicine, 2018, 29, 51	4.5	6
96	Earthworm avoidance of silver nanomaterials over time. <i>Environmental Pollution</i> , 2018 , 239, 751-756	9.3	22
95	The Proteome of Enchytraeus crypticus-Exposure to CuO Nanomaterial and CuCl -in Pursue of a Mechanistic Interpretation. <i>Proteomics</i> , 2018 , 18, e1800091	4.8	11
94	High-throughput gene expression in soil invertebrate embryos - Mechanisms of Cd toxicity in Enchytraeus crypticus. <i>Chemosphere</i> , 2018 , 212, 87-94	8.4	12
93	The Essential Elements of a Risk Governance Framework for Current and Future Nanotechnologies. <i>Risk Analysis</i> , 2018 , 38, 1321-1331	3.9	18

92	Silver (nano)materials cause genotoxicity in Enchytraeus crypticus, as determined by the comet assay. <i>Environmental Toxicology and Chemistry</i> , 2018 , 37, 184-191	3.8	15
91	Mechanisms of (photo)toxicity of TiO nanomaterials (NM103, NM104, NM105): using high-throughput gene expression in Enchytraeus crypticus. <i>Nanoscale</i> , 2018 , 10, 21960-21970	7.7	12
90	Fe-Doped ZnO nanoparticle toxicity: assessment by a new generation of nanodescriptors. <i>Nanoscale</i> , 2018 , 10, 21985-21993	7.7	13
89	Fate and Effect of Nano Tungsten Carbide Cobalt (WCCo) in the Soil Environment: Observing a Nanoparticle Specific Toxicity in Enchytraeus crypticus. <i>Environmental Science & Environmental Science & </i>	10.3	15
88	Identifying conserved UV exposure genes and mechanisms. Scientific Reports, 2018, 8, 8605	4.9	4
87	The Enchytraeus crypticus stress metabolome - CuO NM case study. <i>Nanotoxicology</i> , 2018 , 12, 766-780	5.3	10
86	Effects of copper oxide nanomaterials (CuONMs) are life stage dependent - full life cycle in Enchytraeus crypticus. <i>Environmental Pollution</i> , 2017 , 224, 117-124	9.3	42
85	Enchytraeus crypticus fitness: effect of density on a two-generation study. <i>Ecotoxicology</i> , 2017 , 26, 570	- 5 75	7
84	High-throughput transcriptomics reveals uniquely affected pathways: AgNPs, PVP-coated AgNPs and Ag NM300K case studies. <i>Environmental Science: Nano</i> , 2017 , 4, 929-937	7.1	26
83	An Integrated Data-Driven Strategy for Safe-by-Design Nanoparticles: The FP7 MODERN Project. <i>Advances in Experimental Medicine and Biology</i> , 2017 , 947, 257-301	3.6	5
82	Multigenerational effects of copper nanomaterials (CuONMs) are different of those of CuCl: exposure in the soil invertebrate Enchytraeus crypticus. <i>Scientific Reports</i> , 2017 , 7, 8457	4.9	33
81	Nanomaterials to microplastics: Swings and roundabouts. <i>Nano Today</i> , 2017 , 17, 7-10	17.9	17
80	Insuring nanotech requires effective risk communication. <i>Nature Nanotechnology</i> , 2017 , 12, 717-719	28.7	11
79	Variation-preserving normalization unveils blind spots in gene expression profiling. <i>Scientific Reports</i> , 2017 , 7, 42460	4.9	13
78	Hazard assessment of nickel nanoparticles in soil-The use of a full life cycle test with Enchytraeus crypticus. <i>Environmental Toxicology and Chemistry</i> , 2017 , 36, 2934-2941	3.8	31
77	Shorter lifetime of a soil invertebrate species when exposed to copper oxide nanoparticles in a full lifespan exposure test. <i>Scientific Reports</i> , 2017 , 7, 1355	4.9	30
76	Does long term low impact stress cause population extinction?. Environmental Pollution, 2017, 220, 101	49.13023	<u> </u>
75	Environmental Risk Assessment Strategy for Nanomaterials. <i>International Journal of Environmental Research and Public Health</i> , 2017 , 14,	4.6	29

(2015-2016)

74	Nanosilver pathophysiology in earthworms: Transcriptional profiling of secretory proteins and the implication for the protein corona. <i>Nanotoxicology</i> , 2016 , 10, 303-11	5.3	22
73	Effects of Ag nanomaterials (NM300K) and Ag salt (AgNO3) can be discriminated in a full life cycle long term test with Enchytraeus crypticus. <i>Journal of Hazardous Materials</i> , 2016 , 318, 608-614	12.8	48
72	Toxicity Testing of Silver Nanoparticles in Artificial and Natural Sediments Using the Benthic Organism Lumbriculus variegatus. <i>Archives of Environmental Contamination and Toxicology</i> , 2016 , 71, 405-14	3.2	7
71	The way forward for risk assessment of nanomaterials in solid media. <i>Environmental Pollution</i> , 2016 , 218, 1363-1364	9.3	8
70	Effect assessment of engineered nanoparticles in solid media - Current insight and the way forward. <i>Environmental Pollution</i> , 2016 , 218, 1370-1375	9.3	21
69	Frameworks and tools for risk assessment of manufactured nanomaterials. <i>Environment International</i> , 2016 , 95, 36-53	12.9	73
68	Regulatory ecotoxicity testing of nanomaterials - proposed modifications of OECD test guidelines based on laboratory experience with silver and titanium dioxide nanoparticles. <i>Nanotoxicology</i> , 2016 , 10, 1442-1447	5.3	80
67	Parametrization of nanoparticles: development of full-particle nanodescriptors. <i>Nanoscale</i> , 2016 , 8, 16	52 4 3 7 16	250
66	Speciation and solubility of copper along a soil contamination gradient. <i>Journal of Soils and Sediments</i> , 2015 , 15, 1558-1570	3.4	17
65	Cu-nanoparticles ecotoxicityexplored and explained?. <i>Chemosphere</i> , 2015 , 139, 240-5	8.4	36
64	Combined effect of temperature and copper pollution on soil bacterial community: climate change and regional variation aspects. <i>Ecotoxicology and Environmental Safety</i> , 2015 , 111, 153-9	7	8
63	Responses of earthworms to repeated exposure to three biocides applied singly and as a mixture in an agricultural field. <i>Science of the Total Environment</i> , 2015 , 505, 223-35	10.2	16
62	Effect of 10 different TiO2 and ZrO2 (nano)materials on the soil invertebrate Enchytraeus crypticus. <i>Environmental Toxicology and Chemistry</i> , 2015 , 34, 2409-16	3.8	19
61	Oxidative Stress Mechanisms Caused by Ag Nanoparticles (NM300K) are Different from Those of AgNO3: Effects in the Soil Invertebrate Enchytraeus Crypticus. <i>International Journal of Environmental Research and Public Health</i> , 2015 , 12, 9589-602	4.6	42
60	Ag Nanoparticles (Ag NM300K) in the Terrestrial Environment: Effects at Population and Cellular Level in Folsomia candida (Collembola). <i>International Journal of Environmental Research and Public Health</i> , 2015 , 12, 12530-42	4.6	28
59	Grouping and Read-Across Approaches for Risk Assessment of Nanomaterials. <i>International Journal of Environmental Research and Public Health</i> , 2015 , 12, 13415-34	4.6	104
58	The MARINA Risk Assessment Strategy: A Flexible Strategy for Efficient Information Collection and Risk Assessment of Nanomaterials. <i>International Journal of Environmental Research and Public Health</i> , 2015 , 12, 15007-21	4.6	37
57	Cellular Energy Allocation to Assess the Impact of Nanomaterials on Soil Invertebrates (Enchytraeids): The Effect of Cu and Ag. <i>International Journal of Environmental Research and Public Health</i> , 2015 , 12, 6858-78	4.6	35

56	Effects of silver nanoparticles to soil invertebrates: oxidative stress biomarkers in Eisenia fetida. <i>Environmental Pollution</i> , 2015 , 199, 49-55	9.3	57
55	ITS-NANOprioritising nanosafety research to develop a stakeholder driven intelligent testing strategy. <i>Particle and Fibre Toxicology</i> , 2014 , 11, 9	8.4	112
54	Toxicity of three biocides to springtails and earthworms in a soil multi-species (SMS) test system. <i>Soil Biology and Biochemistry</i> , 2014 , 74, 115-126	7.5	32
53	Development of ecosystems to climate change and the interaction with pollution Inpredictable changes in community structures. <i>Applied Soil Ecology</i> , 2014 , 75, 24-32	5	13
52	A unified framework for nanosafety is needed. <i>Nano Today</i> , 2014 , 9, 546-549	17.9	29
51	Concern-driven integrated approaches to nanomaterial testing and assessmentreport of the NanoSafety Cluster Working Group 10. <i>Nanotoxicology</i> , 2014 , 8, 334-48	5.3	111
50	Risk Assessment of Engineered Nanomaterials 2014 , 459-478		3
49	Response of Enchytraeus crypticus worms to high metal levels in tropical soils polluted by copper smelting. <i>Journal of Geochemical Exploration</i> , 2014 , 144, 427-432	3.8	18
48	Profiling transcriptomic response of Enchytraeus albidus to Cu and Ni: comparison with Cd and Zn. <i>Environmental Pollution</i> , 2014 , 186, 75-82	9.3	12
47	Effects of temperature and copper pollution on soil communityextreme temperature events can lead to community extinction. <i>Environmental Toxicology and Chemistry</i> , 2013 , 32, 2678-85	3.8	15
46	Species differences take shape at nanoparticles: protein corona made of the native repertoire assists cellular interaction. <i>Environmental Science & Environmental & E</i>	10.3	61
45	Time-course profiling of molecular stress responses to silver nanoparticles in the earthworm Eisenia fetida. <i>Ecotoxicology and Environmental Safety</i> , 2013 , 98, 219-26	7	50
44	Interaction between density and Cu toxicity for Enchytraeus crypticuscomparing first and second generation effects. <i>Science of the Total Environment</i> , 2013 , 458-460, 361-6	10.2	17
43	Mechanisms of response to silver nanoparticles on Enchytraeus albidus (Oligochaeta): survival, reproduction and gene expression profile. <i>Journal of Hazardous Materials</i> , 2013 , 254-255, 336-344	12.8	67
42	Toxicity of copper nanoparticles and CuCl2 salt to Enchytraeus albidus worms: survival, reproduction and avoidance responses. <i>Environmental Pollution</i> , 2012 , 164, 164-8	9.3	60
41	Energy Basal Levels and Allocation among Lipids, Proteins, and Carbohydrates in Enchytraeus albidus: Changes Related to Exposure to Cu Salt and Cu Nanoparticles. <i>Water, Air, and Soil Pollution</i> , 2012 , 223, 477-482	2.6	22
40	Earthworms and humans in vitro: characterizing evolutionarily conserved stress and immune responses to silver nanoparticles. <i>Environmental Science & Environmental Science & </i>	10.3	80
39	Ecotoxicity of the veterinary pharmaceutical ivermectin tested in a soil multi-species (SMS) system. <i>Environmental Pollution</i> , 2012 , 171, 133-9	9.3	32

(2004-2012)

38	Effect of Cu-nanoparticles versus Cu-salt in Enchytraeus albidus (Oligochaeta): differential gene expression through microarray analysis. <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> , 2012 , 155, 219-27	3.2	30
37	Effect of Cu-nanoparticles versus one Cu-salt: analysis of stress biomarkers response in Enchytraeus albidus (Oligochaeta). <i>Nanotoxicology</i> , 2012 , 6, 134-43	5.3	51
36	Suitability of lysosomal membrane stability in Eisenia fetida as biomarker of soil copper contamination. <i>Ecotoxicology and Environmental Safety</i> , 2011 , 74, 984-8	7	19
35	Interaction between density and Cu toxicity for Enchytraeus crypticus and Eisenia fetida reflecting field scenarios. <i>Science of the Total Environment</i> , 2011 , 409, 3370-4	10.2	16
34	Limit-test toxicity screening of selected inorganic nanoparticles to the earthworm Eisenia fetida. <i>Ecotoxicology</i> , 2011 , 20, 226-33	2.9	130
33	Predicted no effect concentration (PNEC) for triclosan to terrestrial species (invertebrates and plants). <i>Environment International</i> , 2010 , 36, 338-343	12.9	47
32	The toxicity testing of double-walled nanotubes-contaminated food to Eisenia veneta earthworms. <i>Ecotoxicology and Environmental Safety</i> , 2008 , 71, 616-9	7	109
31	The toxicity of copper contaminated soil using a gnotobiotic Soil Multi-species Test System (SMS). <i>Environment International</i> , 2008 , 34, 524-30	12.9	29
30	Nanomaterials in ecotoxicology. <i>Integrated Environmental Assessment and Management</i> , 2008 , 4, 126-8	2.5	7
29	Effects of C60 fullerene nanoparticles on soil bacteria and protozoans. <i>Environmental Toxicology and Chemistry</i> , 2008 , 27, 1895-903	3.8	141
28	Sub-lethal toxicity of the antiparasitic abamectin on earthworms and the application of neutral red retention time as a biomarker. <i>Chemosphere</i> , 2007 , 68, 744-50	8.4	34
27	Seasonal variation in heavy metal accumulation in subtropical population of the terrestrial isopod, Porcellio laevis. <i>Ecotoxicology and Environmental Safety</i> , 2006 , 63, 168-74	7	28
26	Uncertainty analysis of single-concentration exposure data for risk assessmentintroducing the species effect distribution approach. <i>Environmental Toxicology and Chemistry</i> , 2006 , 25, 3078-81	3.8	3
25	Effects of pesticides on soil invertebrates in laboratory studies: a review and analysis using species sensitivity distributions. <i>Environmental Toxicology and Chemistry</i> , 2006 , 25, 2480-9	3.8	136
24	Effects of pesticides on soil invertebrates in model ecosystem and field studies: a review and comparison with laboratory toxicity data. <i>Environmental Toxicology and Chemistry</i> , 2006 , 25, 2490-501	3.8	68
23	Risk of five polycyclic aromatic hydrocarbons in a terrestrial environment: influence of data variability. <i>Environmental Toxicology and Chemistry</i> , 2005 , 24, 995-1003	3.8	
22	Genetic variation in the enzyme esterase, bioaccumulation and life history traits in the earthworm Lumbricus rubellus from a metal contaminated area, Avonmouth, England. <i>Ecotoxicology</i> , 2004 , 13, 773-	-869	13
21	Critical analysis of soil invertebrate biomarkers: a field case study in Avonmouth, UK. <i>Ecotoxicology</i> , 2004 , 13, 817-22	2.9	29

20	Do earthworms mobilize fixed zinc from ingested soil?. <i>Environmental Science & Environmental Science </i>	10.3	21
19	Effects of pendimethalin at lower trophic levelsa review. <i>Ecotoxicology and Environmental Safety</i> , 2004 , 57, 190-201	7	51
18	The influence of application form on the toxicity of nonylphenol to Folsomia fimetaria (Collembola: Isotomidae). <i>Ecotoxicology and Environmental Safety</i> , 2004 , 58, 294-9	7	28
17	Field effects of simazine at lower trophic levelsa review. <i>Science of the Total Environment</i> , 2002 , 296, 117-37	10.2	41
16	Dose-response curve modeling of excess mortality caused by two forms of stress. <i>Environmental and Ecological Statistics</i> , 2002 , 9, 195-200	2.2	15
15	Effects of eight polycyclic aromatic compounds on the survival and reproduction of the springtail Folsomia fimetaria L. (Collembola, isotomidae). <i>Environmental Toxicology and Chemistry</i> , 2001 , 20, 1332	- 8 .8	29
14	Responses of Folsomia fimetaria (Collembola: Isotomidae) to copper under different soil copper contamination histories in relation to risk assessment. <i>Environmental Toxicology and Chemistry</i> , 2000 , 19, 1297-1303	3.8	42
13	Importance of contamination history for understanding toxicity of copper to earthworm Eisenia fetica (Oligochaeta: Annelida), using neutral-red retention assay. <i>Environmental Toxicology and Chemistry</i> , 2000 , 19, 1774-1780	3.8	76
12	Biomarkers in earthworms. Reviews of Environmental Contamination and Toxicology, 2000, 165, 117-59	3.5	71
11	. Environmental Toxicology and Chemistry, 2000 , 19, 1297	3.8	5
11	. Environmental Toxicology and Chemistry, 2000 , 19, 1297 . Environmental Toxicology and Chemistry, 2000 , 19, 1774	3.8	5
10	. Environmental Toxicology and Chemistry, 2000, 19, 1774 Toxicity of nickel to a soil-dwelling springtail, Folsomia fimetaria (Collembola: Isotomidae).	3.8	10
10	. Environmental Toxicology and Chemistry, 2000, 19, 1774 Toxicity of nickel to a soil-dwelling springtail, Folsomia fimetaria (Collembola: Isotomidae). Ecotoxicology and Environmental Safety, 1999, 43, 57-61 Toxicity of Nickel to the Earthworm and the Applicability of the Neutral Red Retention Assay.	3.8	10
10 9 8	. Environmental Toxicology and Chemistry, 2000, 19, 1774 Toxicity of nickel to a soil-dwelling springtail, Folsomia fimetaria (Collembola: Isotomidae). Ecotoxicology and Environmental Safety, 1999, 43, 57-61 Toxicity of Nickel to the Earthworm and the Applicability of the Neutral Red Retention Assay. Ecotoxicology, 1998, 7, 291-295 Toxicity of Nickel to Soil Organisms in Denmark. Reviews of Environmental Contamination and	3.8 7 2.9	10 27 47
10 9 8	. Environmental Toxicology and Chemistry, 2000, 19, 1774 Toxicity of nickel to a soil-dwelling springtail, Folsomia fimetaria (Collembola: Isotomidae). Ecotoxicology and Environmental Safety, 1999, 43, 57-61 Toxicity of Nickel to the Earthworm and the Applicability of the Neutral Red Retention Assay. Ecotoxicology, 1998, 7, 291-295 Toxicity of Nickel to Soil Organisms in Denmark. Reviews of Environmental Contamination and Toxicology, 1997, 1-34	3.8 7 2.9	10 27 47 11
10 9 8 7 6	. Environmental Toxicology and Chemistry, 2000, 19, 1774 Toxicity of nickel to a soil-dwelling springtail, Folsomia fimetaria (Collembola: Isotomidae). Ecotoxicology and Environmental Safety, 1999, 43, 57-61 Toxicity of Nickel to the Earthworm and the Applicability of the Neutral Red Retention Assay. Ecotoxicology, 1998, 7, 291-295 Toxicity of Nickel to Soil Organisms in Denmark. Reviews of Environmental Contamination and Toxicology, 1997, 1-34 A heavy metal monitoring-programme in Denmark. Science of the Total Environment, 1997, 207, 179-186 Changes in the tissue concentrations and contents of calcium, copper and zinc in the shore crab Carcinus maenas (L.) (Crustacea: Decapoda) during the moult cycle and following copper exposure	3.8 7 2.9 3.5 610.2	10 27 47 11 49

LIST OF PUBLICATIONS

The influence of starvation and copper exposure on the composition of the dorsal carapace and distribution of trace metals in the shore crab Carcinus maenas (L.). *Comparative Biochemistry and Physiology C, Comparative Pharmacology and Toxicology*, **1993**, 106, 537-543

3

High-throughput transcriptomics reveals mechanisms of nanopesticides hanoformulation, commercial, active ingredient finding safe and sustainable-by-design (SSbD) options for the environment. *Environmental Science: Nano*,

7.1