Adrian P Gee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3477227/publications.pdf

Version: 2024-02-01

		172386	133188
73	5,750 citations	29	59
papers	citations	h-index	g-index
73	73	73	7283
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Human Epidermal Growth Factor Receptor 2 (HER2) –Specific Chimeric Antigen Receptor–Modified T Cells for the Immunotherapy of HER2-Positive Sarcoma. Journal of Clinical Oncology, 2015, 33, 1688-1696.	0.8	778
2	HER2-Specific Chimeric Antigen Receptor–Modified Virus-Specific T Cells for Progressive Glioblastoma. JAMA Oncology, 2017, 3, 1094.	3.4	608
3	Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Blood, 2014, 123, 3750-3759.	0.6	534
4	International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials. Cytotherapy, 2016, 18, 151-159.	0.3	400
5	CAR T Cells Administered in Combination with Lymphodepletion and PD-1 Inhibition to Patients with Neuroblastoma. Molecular Therapy, 2017, 25, 2214-2224.	3.7	378
6	Off-the-Shelf Virus-Specific T Cells to Treat BK Virus, Human Herpesvirus 6, Cytomegalovirus, Epstein-Barr Virus, and Adenovirus Infections After Allogeneic Hematopoietic Stem-Cell Transplantation. Journal of Clinical Oncology, 2017, 35, 3547-3557.	0.8	367
7	Activity of Broad-Spectrum T Cells as Treatment for AdV, EBV, CMV, BKV, and HHV6 Infections after HSCT. Science Translational Medicine, 2014, 6, 242ra83.	5.8	357
8	Clinical and immunological responses after CD30-specific chimeric antigen receptor–redirected lymphocytes. Journal of Clinical Investigation, 2017, 127, 3462-3471.	3.9	301
9	Anti-CD30 CAR-T Cell Therapy in Relapsed and Refractory Hodgkin Lymphoma. Journal of Clinical Oncology, 2020, 38, 3794-3804.	0.8	235
10	Inducible caspase-9 suicide gene controls adverse effects from alloreplete T cells after haploidentical stem cell transplantation. Blood, 2015, 125, 4103-4113.	0.6	188
11	InÂVivo Fate and Activity of Second- versus Third-Generation CD19-Specific CAR-T Cells in B Cell Non-Hodgkin's Lymphomas. Molecular Therapy, 2018, 26, 2727-2737.	3.7	180
12	Tumor-Specific T-Cells Engineered to Overcome Tumor Immune Evasion Induce Clinical Responses in Patients With Relapsed Hodgkin Lymphoma. Journal of Clinical Oncology, 2018, 36, 1128-1139.	0.8	137
13	Efficient manufacturing of therapeutic mesenchymal stromal cells with the use of the Quantum Cell Expansion System. Cytotherapy, 2014, 16, 1048-1058.	0.3	128
14	Tumor response and endogenous immune reactivity after administration of HER2 CAR T cells in a child with metastatic rhabdomyosarcoma. Nature Communications, 2020, 11, 3549.	5 . 8	103
15	A Phase <scp>II</scp> study of autologous mesenchymal stromal cells and câ€kit positive cardiac cells, alone or in combination, in patients with ischaemic heart failure: the <scp>CCTRN CONCERTâ€HF</scp> trial. European Journal of Heart Failure, 2021, 23, 661-674.	2.9	89
16	A reproducible immunopotency assay to measure mesenchymal stromal cell–mediated T-cell suppression. Cytotherapy, 2015, 17, 140-151.	0.3	83
17	Optimizing the production of suspension cells using the G-Rex "M―series. Molecular Therapy - Methods and Clinical Development, 2014, 1, 14015.	1.8	71
18	GMP CAR-T cell production. Best Practice and Research in Clinical Haematology, 2018, 31, 126-134.	0.7	49

#	Article	IF	CITATIONS
19	EBV/LMP-specific T cells maintain remissions of T- and B-cell EBV lymphomas after allogeneic bone marrow transplantation. Blood, 2018, 132, 2351-2361.	0.6	49
20	"Mini―bank of only 8 donors supplies CMV-directed T cells to diverse recipients. Blood Advances, 2019, 3, 2571-2580.	2.5	44
21	Two Decades of Global Progress in Authorized Advanced Therapy Medicinal Products: An Emerging Revolution in Therapeutic Strategies. Frontiers in Cell and Developmental Biology, 2020, 8, 547653.	1.8	44
22	Autologous HER2 CMV bispecific CAR T cells for progressive glioblastoma: Results from a phase I clinical trial Journal of Clinical Oncology, 2015, 33, 3008-3008.	0.8	44
23	Mitochondria-Rich Extracellular Vesicles Rescue Patient-Specific Cardiomyocytes From Doxorubicin Injury. JACC: CardioOncology, 2021, 3, 428-440.	1.7	42
24	Clinical effects of administering leukemia-specific donor T cells to patients with AML/MDS after allogeneic transplant. Blood, 2021, 137, 2585-2597.	0.6	38
25	Intravenous Bone Marrow Mononuclear Cells for Acute Ischemic Stroke: Safety, Feasibility, and Effect Size from a Phase I Clinical Trial. Stem Cells, 2019, 37, 1481-1491.	1.4	35
26	Multicenter cell processing for cardiovascular regenerative medicine applications: the Cardiovascular Cell Therapy Research Network (CCTRN) experience. Cytotherapy, 2010, 12, 684-691.	0.3	33
27	T-Cell Receptor Stimulation Enhances the Expansion and Function of CD19 Chimeric Antigen Receptor–Expressing T Cells. Clinical Cancer Research, 2019, 25, 7340-7350.	3.2	32
28	Expansion of HER2-CAR T cells after lymphodepletion and clinical responses in patients with advanced sarcoma Journal of Clinical Oncology, 2017, 35, 10508-10508.	0.8	32
29	Quantitative activation suppression assay to evaluate human bone marrow–derived mesenchymal stromal cell potency. Cytotherapy, 2015, 17, 1675-1686.	0.3	31
30	T-Cell Therapy for Lymphoma Using Nonengineered Multiantigen-Targeted T Cells Is Safe and Produces Durable Clinical Effects. Journal of Clinical Oncology, 2021, 39, 1415-1425.	0.8	30
31	Safety and feasibility of virus-specific T cells derived from umbilical cord blood in cord blood transplant recipients. Blood Advances, 2019, 3, 2057-2068.	2.5	27
32	T Cell-Activating Mesenchymal Stem Cells as a Biotherapeutic for HCC. Molecular Therapy - Oncolytics, 2017, 6, 69-79.	2.0	26
33	The safety and clinical effects of administering a multiantigen-targeted T cell therapy to patients with multiple myeloma. Science Translational Medicine, 2020, 12 , .	5.8	25
34	Safety and Clinical Efficacy of Rapidly-Generated Trivirus-Directed T Cells After Allogeneic Hematopoietic Stem Cell Transplant. Blood, 2012, 120, 223-223.	0.6	25
35	Allogeneic Mesenchymal Cell Therapy in Anthracycline-Induced Cardiomyopathy HeartÂFailure Patients. JACC: CardioOncology, 2020, 2, 581-595.	1.7	24
36	Direct Comparison of In Vivo Fate of Second and Third-Generation CD19-Specific Chimeric Antigen Receptor (CAR)-T Cells in Patients with B-Cell Lymphoma: Reversal of Toxicity from Tonic Signaling. Blood, 2016, 128, 1851-1851.	0.6	22

#	Article	IF	CITATIONS
37	HLA-restricted NY-ESO-1 peptide immunotherapy for metastatic castration resistant prostate cancer. Investigational New Drugs, 2014, 32, 235-242.	1.2	21
38	Large-Scale Culture and Genetic Modification of Human Natural Killer Cells for Cellular Therapy. Methods in Molecular Biology, 2016, 1441, 195-202.	0.4	20
39	CD30-Chimeric Antigen Receptor (CAR) T Cells for Therapy of Hodgkin Lymphoma (HL). Blood, 2018, 132, 680-680.	0.6	20
40	Rationale and Design of the SENECA (StEm cell iNjECtion in cAncer survivors) Trial. American Heart Journal, 2018, 201, 54-62.	1.2	17
41	Long-term follow-up for the development of subsequent malignancies in patients treated with genetically modified IECs. Blood, 2022, 140, 16-24.	0.6	14
42	Absence of Replication-Competent Retrovirus in Vectors, T Cell Products, and Patient Follow-Up Samples. Molecular Therapy, 2018, 26, 6-7.	3.7	12
43	Mesenchymal stromal cell secretomes are modulated by suspension time, delivery vehicle, passage through catheter, and exposure to adjuvants. Cytotherapy, 2017, 19, 36-46.	0.3	11
44	Clinical Responses In Patients Infused With T Lymphocytes Redirected To Target Î ² -Light Immunoglobulin Chain. Blood, 2013, 122, 506-506.	0.6	6
45	Regulatory issues in cellular therapies. Expert Opinion on Biological Therapy, 2003, 3, 537-540.	1.4	5
46	Regulation of Regenerative Medicine Products. Advances in Experimental Medicine and Biology, 2018, 1098, 189-198.	0.8	5
47	Comparative analysis of cell therapy infusion workflows at clinical sites. Cytotherapy, 2021, 23, 285-292.	0.3	5
48	The impact of regulatory policy on the development of somatic cell therapies in the United States. Transplant Immunology, 2002, 9, 295-300.	0.6	4
49	Regulatory issues in cellular therapies. Journal of Cellular Biochemistry, 2002, 85, 104-112.	1.2	4
50	Phase I Study to Improve Virus-Specific Immune Reconstitution After Cord Blood Transplantation Using Cord Blood-Derived Virus-Specific Cytotoxic T Lymphocytes. Blood, 2011, 118, 155-155.	0.6	4
51	Multicenter Study of "off-the-Shelf―Third Party Virus-Specific T Cells (VSTs) to Treat Adenovirus (Adv), Cytomegalovirus (CMV) or Epstein Barr Virus (EBV) Infection After Hemopoietic Stem Cell Transplantation (HSCT). Blood, 2012, 120, 457-457.	0.6	2
52	Fresh Ex Vivo Expanded Natural Killer Cells Demonstrate Robust Proliferation in Vivo in High-Risk Relapsed Multiple Myeloma (MM) Patients. Blood, 2012, 120, 579-579.	0.6	2
53	Administration of Most Closely HLA-Matched Multivirus-Specific T Cells for the Treatment of EBV, CMV, AdV, HHV6, and BKV Post Allogeneic Hematopoietic Stem Cell Transplant. Blood, 2016, 128, 501-501.	0.6	2
54	Phase I trial of NY-ESO-1/LAGE1 peptide vaccine for metastatic castration resistant prostate cancer (mCRPC) Journal of Clinical Oncology, 2012, 30, 4643-4643.	0.8	2

#	Article	IF	Citations
55	The National Heart, Lung, and Blood Instituteâ€funded Production Assistance for Cellular Therapies (PACT) program: Eighteen years of cell therapy. Clinical and Translational Science, 2021, 14, 2099-2110.	1.5	1
56	Flow Cytometric Analysis of Specimens by a Central Reference Laboratory in a Multi-Center Study: Factors Affecting Data Quality Blood, 2006, 108, 3385-3385.	0.6	1
57	Safety and Preliminary Efficacy of "Ready to Administer" Cytomegalovirus (CMV)-Specific T Cells for the Treatment of Patients with Refractory CMV Infection. Blood, 2016, 128, 388-388.	0.6	1
58	Complete Tumor Responses in Lymphoma Patients Receiving Autologous Cytotoxic T Lymphocytes Targeting Epstein Barr Virus (EBV) - Latent Membrane Proteins. Blood, 2011, 118, 956-956.	0.6	1
59	Assessment of the LOVO device for final harvest of novel cell therapies: a Production Assistance for Cellular Therapies multi-center study. Cytotherapy, 2022, 24, 691-698.	0.3	1
60	CD34 measurement: setting standards. Cytotherapy, 2014, 16, 1451-1452.	0.3	0
61	The Use of Autologous LMP2-Specific Cytotoxic T Lymphocytes (CTL) for the Treatment of Relapsed EBV-Positive Hodgkin Disease and Non-Hodgkin Lymphoma Blood, 2005, 106, 773-773.	0.6	0
62	Graft Composition and Outcomes in Unrelated Donor Transplantation Blood, 2007, 110, 3065-3065.	0.6	0
63	Complete Tumor Responses in Lymphoma Patients Who Receive Autologous Cytotoxic T Lymphocytes Targeting EBV Latent Membrane Proteins. Blood, 2008, 112, 230-230.	0.6	0
64	Cytotoxic T Lymphocytes (CTL) Specific for Adenovirus and CMV Can Be Generated from Umbilical Cord Blood for Adoptive Immunotherapy. Blood, 2008, 112, 3505-3505.	0.6	0
65	Donor Characteristics Affecting Graft Failure and Survival after Unrelated Donor Transplantation with Reduced Intensity Conditioning Regimens (RIC) for Hematologic Malignancies Blood, 2008, 112, 1968-1968.	0.6	0
66	Cytotoxic T Lymphocytes (CTL) Specific for CMV, Adenovirus, and EBV Can Be Generated From Naive T Cells for Adoptive Immunotherapy Blood, 2009, 114, 504-504.	0.6	0
67	Adverse Events Following Infusion of T Cells for Adoptive Immunotherapy: A 10 Year Experience Blood, 2009, 114, 3212-3212.	0.6	0
68	Expanded Natural Killer (NK) Cells for Immunotherapy: Fresh and Made to Order. Blood, 2012, 120, 1912-1912.	0.6	0
69	Clinical-Scale Expansion of Human Bone Marrow-Derived Mesenchymal Stromal Cells to Treat Patients After Ischemic Stroke Blood, 2012, 120, 3021-3021.	0.6	0
70	Adoptively-Transferred EBV-Specific T Cells to Prevent or Treat EBV-Related Lymphoproliferative Disease in Allogeneic HSCT Recipients - a Single Center Experience Spanning 22 Years. Blood, 2015, 126, 1926-1926.	0.6	0
71	Abstract TP94: Mesenchymal Stromal Cells Behave Differently When Exposed to Medications Commonly Prescribed to Stroke Patients. Stroke, 2017, 48, .	1.0	0
72	Donor-Derived Adoptive T-Cell Therapy Targeting Multiple Tumor Associated Antigens to Prevent Post-Transplant Relapse in Patients with ALL. Blood, 2021, 138, 471-471.	0.6	0

#	Article	IF	CITATIONS
73	Abstract 14859: Mesenchymal Stem Cells Rescue Patient-Specific Cardiomyocyte Viability and Function Following Doxorubicin Injury via Microvesicle Mediated Mitochondrial Transfer to Recapitulate Human Clinical Trial Results. Circulation, 2020, 142, .	1.6	O