
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3476874/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Monitoring of viral myocarditis injury using an energy-confined upconversion nanoparticle and nature-inspired biochip combined CRISPR/Cas12a-powered biosensor. Analytica Chimica Acta, 2022, 1195, 339455.	5.4	10
2	Three-dimensional hierarchical MoO ₂ /MoC@NC-CC free-standing anode applied in microbial fuel cells. Journal of Materials Chemistry A, 2022, 10, 4110-4119.	10.3	13
3	Sphingomyelin-Sequestered Cholesterol Domain Recruits Formin-Binding Protein 17 for Constricting Clathrin-Coated Pits in Influenza Virus Entry. Journal of Virology, 2022, 96, JVI0181321.	3.4	6
4	A dual DNA tetrahedrons and MnO2 nanosheets sustained entropy-driven DNA amplifier enables high-performance operation in live cells and bodies under a light-gated manner. Chemical Engineering Journal, 2022, 438, 135590.	12.7	7
5	Amplification of the Fluorescence Signal with Clustered Regularly Interspaced Short Palindromic Repeats-Cas12a Based on Au Nanoparticle-DNAzyme Probe and On-Site Detection of Pb ²⁺ Via the Photonic Crystal Chip. ACS Sensors, 2022, 7, 1572-1580.	7.8	25
6	Optical tweezers assisted analyzing and sorting of tumor cells tagged with fluorescence nanospheres in a microfluidic chip. Sensors and Actuators B: Chemical, 2022, 368, 132173.	7.8	4
7	Holographic Optical Tweezers and Boosting Upconversion Luminescent Resonance Energy Transfer Combined Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas12a Biosensors. ACS Nano, 2021, 15, 8142-8154.	14.6	78
8	Influenza A Viruses Enter Host Cells via Extracellular Ca ²⁺ Influx-Involved Clathrin-Mediated Endocytosis. ACS Applied Bio Materials, 2021, 4, 2044-2051.	4.6	10
9	Revealing Microtubule-Dependent Slow-Directed Motility by Single-Particle Tracking. Analytical Chemistry, 2021, 93, 5211-5217.	6.5	4
10	Light-Activated and Self-Driven Autonomous DNA Nanomachine Enabling Fluorescence Imaging of MicroRNA in Living Cells with Exceptional Precision and Efficiency. ACS Applied Materials & Interfaces, 2021, 13, 31485-31494.	8.0	27
11	Detection of Amyloid β Oligomers by a Fluorescence Ratio Strategy Based on Optically Trapped Highly Doped Upconversion Nanoparticles-SiO ₂ @Metal–Organic Framework Microspheres. Analytical Chemistry, 2021, 93, 12447-12455.	6.5	22
12	Integrating multiple hybridization chain reactions on gold nanoparticle and alkaline phosphatase-mediated in situ growth of gold nanobipyramids: An ultrasensitive and high color resolution colorimetric method to detect the mecA gene of Staphylococcus aureus. Journal of Hazardous Materials, 2021, 418, 126223.	12.4	11
13	Biomimetic Chip Enhanced Time-Gated Luminescent CRISPR-Cas12a Biosensors under Functional DNA Regulation. Analytical Chemistry, 2021, 93, 12514-12523.	6.5	12
14	Photo-gated and self-powered three-dimensional DNA motors with boosted biostability for exceptionally precise and efficient tracing of intracellular survivin mRNA. Biosensors and Bioelectronics, 2021, 190, 113445.	10.1	22
15	A Photoresponsive and Metal–Organic Framework Encapsulated DNA Tetrahedral Entropy-Driven Amplifier for High-Performance Imaging Intracellular MicroRNA. Analytical Chemistry, 2021, 93, 16638-16645.	6.5	29
16	Bioinspired sensor chip for detection of miRNA-21 based on photonic crystals assisted cyclic enzymatic amplification method. Biosensors and Bioelectronics, 2020, 150, 111866.	10.1	39
17	Real-Time Monitoring of Temperature Variations around a Gold Nanobipyramid Targeted Cancer Cell under Photothermal Heating by Actively Manipulating an Optically Trapped Luminescent Upconversion Microparticle. Analytical Chemistry, 2020, 92, 1292-1300.	6.5	17
18	Integrating 808 nm Light-Excited Upconversion Luminescence Powering with DNA Tetrahedron Protection: An Exceptionally Precise and Stable Nanomachine for Intracelluar MicroRNA Tracing. ACS Sensors, 2020, 5, 199-207.	7.8	17

#	Article	IF	CITATIONS
19	A boosting upconversion luminescent resonance energy transfer and biomimetic periodic chip integrated CRISPR/Cas12a biosensor for functional DNA regulated transduction of non-nucleic acid targets. Biosensors and Bioelectronics, 2020, 169, 112650.	10.1	57
20	Lipid-Specific Labeling of Enveloped Viruses with Quantum Dots for Single-Virus Tracking. MBio, 2020, 11, .	4.1	24
21	Spectrally Combined Encoding for Profiling Heterogeneous Circulating Tumor Cells Using a Multifunctional Nanosphereâ€Mediated Microfluidic Platform. Angewandte Chemie, 2020, 132, 11336-11340.	2.0	4
22	Detection of ATP from "fluorescence―to "enhanced fluorescence―based on metal-enhanced fluorescence triggered by aptamer nanoswitch. Sensors and Actuators B: Chemical, 2020, 319, 128263.	7.8	32
23	Improving Flow Bead Assay: Combination of Near-Infrared Optical Tweezers Stabilizing and Upconversion Luminescence Encoding. Analytical Chemistry, 2020, 92, 5258-5266.	6.5	12
24	Spectrally Combined Encoding for Profiling Heterogeneous Circulating Tumor Cells Using a Multifunctional Nanosphereâ€Mediated Microfluidic Platform. Angewandte Chemie - International Edition, 2020, 59, 11240-11244.	13.8	36
25	Incorporating luminescence-concentrating upconversion nanoparticles and DNA walkers into optical tweezers assisted imaging: a highly stable and ultrasensitive bead supported assay. Chemical Communications, 2020, 56, 6997-7000.	4.1	12
26	Breaking Through Bead-Supported Assay: Integration of Optical Tweezers Assisted Fluorescence Imaging and Luminescence Confined Upconversion Nanoparticles Triggered Luminescent Resonance Energy Transfer (LRET). Analytical Chemistry, 2019, 91, 7950-7957.	6.5	21
27	Evaluation of Luminescence Properties of Single Hydrophilic Upconversion Nanoparticles by Optical Trapping. Journal of Physical Chemistry C, 2019, 123, 10107-10113.	3.1	14
28	Metal-enhanced fluorescence of gold nanoclusters as a sensing platform for multi-component detection. Sensors and Actuators B: Chemical, 2019, 282, 650-658.	7.8	28
29	Using optical tweezers to construct an upconversion luminescent resonance energy transfer analytical platform. Sensors and Actuators B: Chemical, 2019, 282, 790-797.	7.8	5
30	Combining Holographic Optical Tweezers with Upconversion Luminescence Encoding: Imaging-Based Stable Suspension Array for Sensitive Responding of Dual Cancer Biomarkers. Analytical Chemistry, 2018, 90, 2639-2647.	6.5	30
31	Multiple optical trapping assisted bead-array based fluorescence assay of free and total prostate-specific antigen in serum. Sensors and Actuators B: Chemical, 2018, 269, 143-150.	7.8	13
32	Target-triggered signal turn-on detection of prostate specific antigen based on metal-enhanced fluorescence of Ag@SiO ₂ @SiO ₂ -RuBpy composite nanoparticles. Nanotechnology, 2017, 28, 065501.	2.6	19
33	Fluorescent sensing of thrombin using a magnetic nano-platform with aptamer-target-aptamer sandwich and fluorescent silica nanoprobe. Journal of Luminescence, 2017, 187, 9-13.	3.1	11
34	Integrating optical tweezers with up-converting luminescence: a non-amplification analytical platform for quantitative detection of microRNA-21 sequences. Chemical Communications, 2017, 53, 4092-4095.	4.1	19
35	Dual Amplification Fluorescence Assay for Alpha Fetal Protein Utilizing Immunohybridization Chain Reaction and Metal-Enhanced Fluorescence of Carbon Nanodots. ACS Applied Materials & Interfaces, 2017, 9, 37606-37614.	8.0	34
36	Colorimetric and visual determination of DNase I activity using gold nanoparticles as an indicator. Mikrochimica Acta, 2017, 184, 101-106.	5.0	16

#	Article	IF	CITATIONS
37	One-step separation-free detection of carcinoembryonic antigen in whole serum: Combination of two-photon excitation fluorescence and optical trapping. Biosensors and Bioelectronics, 2017, 90, 146-152.	10.1	17
38	Metal-enhanced fluorescent dye-doped silica nanoparticles and magnetic separation: A sensitive platform for one-step fluorescence detection of prostate specific antigen. Biosensors and Bioelectronics, 2017, 87, 881-887.	10.1	84
39	Fluorescence Detection of H5N1 Virus Gene Sequences Based on Optical Tweezers with Two-Photon Excitation Using a Single Near Infrared Nanosecond Pulse Laser. Analytical Chemistry, 2016, 88, 4432-4439.	6.5	23
40	Dual-component gene detection for H7N9 virus – The combination of optical trapping and bead-based fluorescence assay. Biosensors and Bioelectronics, 2016, 86, 1031-1037.	10.1	13
41	DNA-stabilized silver nanoclusters and carbon nanoparticles oxide: A sensitive platform for label-free fluorescence turn-on detection of HIV-DNA sequences. Biosensors and Bioelectronics, 2016, 85, 837-843.	10.1	82
42	Graphene oxide enhanced specificity at aptamer and its application to multiplexed enzymatic activity sensing. RSC Advances, 2016, 6, 11815-11821.	3.6	7
43	A fluorescent aptasensor using double-stranded DNA/graphene oxide as the indicator probe. Biosensors and Bioelectronics, 2016, 78, 431-437.	10.1	22
44	Analysis of Cancer Marker in Tissues with Hadamard Transform Fluorescence Spectral Microscopic Imaging. Journal of Fluorescence, 2015, 25, 397-402.	2.5	3
45	An exonuclease III-aided "turn-on―fluorescence assay for mercury ions based on graphene oxide and metal-mediated "molecular beacon― RSC Advances, 2015, 5, 12994-12999.	3.6	10
46	A gold nanoparticle-based label free colorimetric aptasensor for adenosine deaminase detection and inhibition assay. Analyst, The, 2015, 140, 1572-1577.	3.5	16
47	Indirect immunofluorescence detection of E. coli O157:H7 with fluorescent silica nanoparticles. Biosensors and Bioelectronics, 2015, 66, 95-102.	10.1	44
48	Exploring Sialic Acid Receptorsâ€Related Infection Behavior of Avian Influenza Virus in Human Bronchial Epithelial Cells by Singleâ€Particle Tracking. Small, 2014, 10, 2712-2720.	10.0	24
49	Sensitive multiplexed DNA detection using silica nanoparticles as the target capturing platform. Talanta, 2014, 128, 263-267.	5.5	18
50	Interaction of single-stranded DNA with graphene oxide: fluorescence study and its application for S1 nuclease detection. RSC Advances, 2014, 4, 18294-18300.	3.6	53
51	Graphene Oxide and Metalâ€Mediated Base Pairs Based "Molecular Beacon―Integrating with Exonuclease I for Fluorescence Turnâ€on Detection of Biothiols. Small, 2014, 10, 3412-3420.	10.0	12
52	Preparation of RuBpy-doped Silica Fluorescent Nanoprobes and Their Applications to the Recognition of Liver Cancer Cells. Chinese Journal of Analytical Chemistry, 2014, 42, 326-331.	1.7	5
53	Amplified fluorescent assay of potassium ions using graphene oxide and a conjugated cationic polymer. Analyst, The, 2013, 138, 6301.	3.5	13
54	Goat anti-rabbit IgG conjugated fluorescent dye-doped silica nanoparticles for human breast carcinoma cell recognition. Analyst, The, 2013, 138, 7411.	3.5	8

#	Article	IF	CITATIONS
55	Amplified Fluorescent Sensing of DNA Using Graphene Oxide and a Conjugated Cationic Polymer. Biomacromolecules, 2013, 14, 117-123.	5.4	69
56	An ultra-high sensitive platform for fluorescence detection of micrococcal nuclease based on grapheneoxide. Biosensors and Bioelectronics, 2013, 42, 467-473.	10.1	36
57	Graphene Oxideâ€Based Fluorescent Biosensor for Protein Detection via Terminal Protection of Smallâ€Molecule‣inked DNA. Small, 2013, 9, 2097-2101.	10.0	57
58	MUC-1 aptamer-conjugated dye-doped silica nanoparticles for MCF-7 cells detection. Biomaterials, 2013, 34, 371-381.	11.4	90
59	Graphene oxide based fluorescent aptasensor for adenosine deaminase detection using adenosine as the substrate. Biosensors and Bioelectronics, 2012, 37, 61-67.	10.1	62
60	Covalent conjugation of avidin with dye-doped silica nanopaticles and preparation of high density avidin nanoparticles as photostable bioprobes. Biosensors and Bioelectronics, 2012, 37, 75-81.	10.1	18
61	In situ spectral imaging of marker proteins in gastric cancer with near-infrared and visible quantum dots probes. Talanta, 2011, 85, 136-141.	5.5	14
62	Silica nanoparticles based label-free aptamer hybridization for ATP detection using hoechst33258 as the signal reporter. Biosensors and Bioelectronics, 2011, 29, 46-52.	10.1	40
63	Study on the chemiluminescence resonance energy transfer between luminol and fluorescent dyes using a linear CCD spectrometer. Journal of Luminescence, 2010, 130, 1872-1879.	3.1	14
64	Microcalorimetric and microscopic studies on the inhibitory activities of methylene blue/TiO2 nanocomposites on Staphylococcus aureus and the mechanism of cell damage. Thermochimica Acta, 2010, 501, 8-12.	2.7	8
65	Quantum-dot-based immunofluorescent imaging of HER2 and ER provides new insights into breast cancer heterogeneity. Nanotechnology, 2010, 21, 095101.	2.6	56
66	Evaluation of the Bioconjugation Efficiency of Different Quantum Dots as Probes for Immunostaining Tumor-Marker Proteins. Applied Spectroscopy, 2010, 64, 847-854.	2.2	10
67	Determination of Rutin with UV-Vis Spectrophotometric and Laser-Induced Fluorimetric Detections Using a Non-Scanning Spectrometer. Analytical Letters, 2010, 43, 893-904.	1.8	76
68	Hadamard transform spectral microscopy for single cell imaging using organic and quantum dotfluorescent probes. Analyst, The, 2009, 134, 504-511.	3.5	11
69	Fluorescence resonance energy transfer between acridine orange and rhodamine 6G and its analytical application for vitamin B12 with flow-injection laser-induced fluorescence detection. Talanta, 2008, 77, 176-181.	5.5	26
70	Chemical Probing of Single Cancer Cells with Gold Nanoaggregates by Surface-Enhanced Raman Scattering. Applied Spectroscopy, 2008, 62, 1060-1069.	2.2	28
71	Probing Intrinsic and Extrinsic Components in Single Osteosarcoma Cells by Near-Infrared Surface-Enhanced Raman Scattering. Analytical Chemistry, 2007, 79, 3646-3653.	6.5	96
72	Quantitative DNA Imaging in Breast Tumor Cells by a Hadamard Transform Fluorescence Imaging Microscope. Analytical Sciences, 2006, 22, 701-707.	1.6	5

#	Article	IF	CITATIONS
73	High-resolution Hadamard transform microscope fluorescence imaging: quantifying the DNA content in single cells. Analytical and Bioanalytical Chemistry, 2005, 381, 901-906.	3.7	5
74	Singleâ€Cell Analysis in a Plastic Microfluidic Channel with a Hadamard Transform Microscopic Fluorescence Image System. Analytical Letters, 2004, 37, 2053-2065.	1.8	3
75	Study on Schiff base complexes–cellular DNA interactions by a novel system of Hadamard transform fluorescence image microscopy. Analyst, The, 2003, 128, 974-979.	3.5	9
76	Hadamard transform fluorescence image microscopy using one-dimensional movable mask. Analytica Chimica Acta, 2002, 468, 27-34.	5.4	16
77	Measurements of the DNA Content in a Breast Tumor Cell Based on the Hadamard Transform Microscopic Fluorescence Image Analytical Sciences, 1999, 15, 113-119.	1.6	6