Valerie Bougault

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3476852/publications.pdf

Version: 2024-02-01

471061 395343 1,140 41 17 33 citations h-index g-index papers 42 42 42 1188 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Serum and sputum MMP-9/TIMP-1 in winter sports athletes and swimmers: relationships with airway function. Biomarkers, 2022, 27, 127-137.	0.9	O
2	Environmental factors associated with non-infective acute respiratory illness in athletes: A systematic review by a subgroup of the IOC consensus group on "acute respiratory illness in the athlete― Journal of Science and Medicine in Sport, 2022, 25, 466-473.	0.6	2
3	Is airway damage during physical exercise related to airway dehydration? Inputs from a computational model. Journal of Applied Physiology, 2022, 132, 1031-1040.	1.2	3
4	Prevalence of lower airway dysfunction in athletes: a systematic review and meta-analysis by a subgroup of the IOC consensus group on †acute respiratory illness in the athleteâ€. British Journal of Sports Medicine, 2022, 56, 213-222.	3.1	25
5	A preliminary study on assessment of lead exposure in competitive biathletes: and its effects on respiratory health. Movement and Sports Sciences - Science Et Motricite, 2022, , .	0.2	O
6	Continuous exercise induces airway epithelium damage while a matched-intensity and volume intermittent exercise does not. Respiratory Research, 2019, 20, 12.	1.4	18
7	Cardiorespiratory adaptation during 6-Minute Walk Test in fibrotic idiopathic interstitial pneumonia patients who did or did not respond to pulmonary rehabilitation. European Journal of Physical and Rehabilitation Medicine, 2019, 55, 103-112.	1.1	6
8	Exercise-Induced Bronchoconstriction and the Air We Breathe. Immunology and Allergy Clinics of North America, 2018, 38, 183-204.	0.7	19
9	Physiological comparison of intensityâ€controlled, isocaloric intermittent and continuous exercise ^{â€} . European Journal of Sport Science, 2018, 18, 1368-1375.	1.4	6
10	Changes in airway inflammation and remodelling in swimmers after quitting sport competition. Clinical and Experimental Allergy, 2018, 48, 1748-1751.	1.4	4
11	Effect of work:rest cycle duration on fluctuations during intermittent exercise. Journal of Sports Sciences, 2017, 35, 7-13.	1.0	7
12	Allergies and Exercise-Induced Bronchoconstriction in a Youth Academy and Reserve Professional Soccer Team. Clinical Journal of Sport Medicine, 2017, 27, 450-456.	0.9	8
13	Cardiorespiratory Response to Different Exercise Tests in Interstitial Lung Disease. Medicine and Science in Sports and Exercise, 2016, 48, 2345-2352.	0.2	12
14	Increased exhaled breath condensate 8â€isoprostane after a swimming session in competitive swimmers. European Journal of Sport Science, 2016, 16, 569-576.	1.4	14
15	A charter for biomedical research ethics in a progressive, caring society. Philosophy, Ethics, and Humanities in Medicine, 2015, 10, 12.	0.7	2
16	Prevalence and characteristics of asthma in the aquatic disciplines. Journal of Allergy and Clinical Immunology, 2015, 136, 588-594.	1.5	51
17	Air Quality and Temperature Effects on Exerciseâ€Induced Bronchoconstriction. , 2015, 5, 579-610.		45
18	Exercise-induced metabolic fluctuations influence AMPK, p38-MAPK and CaMKII phosphorylation in human skeletal muscle. Physiological Reports, 2015, 3, e12462.	0.7	84

#	Article	IF	CITATIONS
19	Airway Response to Methacholine following Eucapnic Voluntary Hyperpnea in Athletes. PLoS ONE, 2015, 10, e0121781.	1.1	2
20	Perception of Bronchoconstriction Following Methacholine and Eucapnic Voluntary Hyperpnea Challenges in Elite Athletes. Chest, 2014, 145, 794-802.	0.4	24
21	Cerebral oxygenation during hyperoxia-induced increase in exercise tolerance for untrained men. European Journal of Applied Physiology, 2013, 113, 2047-2056.	1.2	33
22	Where to from Here for Exercise-Induced Bronchoconstriction. Immunology and Allergy Clinics of North America, 2013, 33, 423-442.	0.7	7
23	Airways Disorders and the Swimming Pool. Immunology and Allergy Clinics of North America, 2013, 33, 395-408.	0.7	12
24	Exaggerated blood pressure response to exercise in athletes. Blood Pressure Monitoring, 2012, 17, 184-192.	0.4	10
25	Respiratory health of elite athletes – preventing airway injury: a critical review. British Journal of Sports Medicine, 2012, 46, 471-476.	3.1	104
26	Airway dysfunction in swimmers: Table 1. British Journal of Sports Medicine, 2012, 46, 402-406.	3.1	59
27	Cardiorespiratory Screening in Elite Endurance Sports Athletes: The Quebec Study. Physician and Sportsmedicine, 2012, 40, 55-65.	1.0	17
28	Is there a potential link between indoor chlorinated pool environment and airway remodeling/inflammation in swimmers?. Expert Review of Respiratory Medicine, 2012, 6, 469-471.	1.0	16
29	Seasonal variations of cough reflex sensitivity in elite athletes training in cold air environment. Cough, 2012, 8, 2.	2.7	28
30	Airway remodeling and inflammation in competitive swimmers training in indoor chlorinated swimming pools. Journal of Allergy and Clinical Immunology, 2012, 129, 351-358.e1.	1.5	66
31	Airway hyperresponsiveness in elite swimmers: Is it a transient phenomenon?. Journal of Allergy and Clinical Immunology, 2011, 127, 892-898.	1.5	54
32	Increased methacholine sensitivity after eucapnic voluntary hyperpnea. Allergy, Asthma and Clinical Immunology, 2010, 6, .	0.9	0
33	Effect of intense swimming training on rhinitis in highâ€level competitive swimmers. Clinical and Experimental Allergy, 2010, 40, 1238-1246.	1.4	39
34	Bronchial Challenges and Respiratory Symptoms in Elite Swimmers and Winter Sport Athletes. Chest, 2010, 138, 31S-37S.	0.4	75
35	Asthma, airway inflammation and epithelial damage in swimmers and cold-air athletes. European Respiratory Journal, 2009, 33, 740-746.	3.1	137
36	Cardiac responses to swim bench exercise in age-group swimmers and non-athletic children. Journal of Science and Medicine in Sport, 2009, 12, 266-272.	0.6	15

3

#	Article	IF	CITATIONS
37	The Respiratory Health of Swimmers. Sports Medicine, 2009, 39, 295-312.	3.1	61
38	Does Thoracic Bioimpedance Accurately Determine Cardiac Output in COPD Patients During Maximal or Intermittent Exercise?. Chest, 2005, 127, 1122-1131.	0.4	12
39	Does Thoracic Bioimpedance Accurately Determine Cardiac Output in COPD Patients During Maximal or Intermittent Exercise? <xref rid="AFF1">[*]</xref> . Chest, 2005, 127, 1122.	0.4	43
40	Intermittent Exercise Test in Chronic Obstructive Pulmonary Disease Patients: How Do the Pulmonary Hemodynamics Adapt?. Medicine and Science in Sports and Exercise, 2004, 36, 2032-2039.	0.2	11
41	International Olympic Committee (IOC) consensus statement on acute respiratory illness in athletes part 2: non-infective acute respiratory illness. British Journal of Sports Medicine, 0, , bjsports-2022-105567.	3.1	9