Maria H A Santana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3476780/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Humic acids: Structural properties and multiple functionalities for novel technological developments. Materials Science and Engineering C, 2016, 62, 967-974.	7.3	421
2	Randomized controlled trial comparing hyaluronic acid, platelet-rich plasma and the combination of both in the treatment of mild and moderate osteoarthritis of the knee. Journal of Stem Cells and Regenerative Medicine, 2016, 12, 69-78.	2.2	131
3	Solid lipid nanoparticles as carriers for lipophilic compounds for applications in foods. Food Research International, 2019, 122, 610-626.	6.2	124
4	Contributions for classification of platelet rich plasma – proposal of a new classification: MARSPILL. Regenerative Medicine, 2017, 12, 565-574.	1.7	113
5	Polymorphism, crystallinity and hydrophilic–lipophilic balance of stearic acid and stearic acid–capric/caprylic triglyceride matrices for production of stable nanoparticles. Colloids and Surfaces B: Biointerfaces, 2011, 86, 125-130.	5.0	112
6	Protection against tuberculosis by a single intranasal administration of DNA-hsp65 vaccine complexed with cationic liposomes. BMC Immunology, 2008, 9, 38.	2.2	82
7	Optimizing SLN and NLC by 22 full factorial design: Effect of homogenization technique. Materials Science and Engineering C, 2012, 32, 1375-1379.	7.3	72
8	Sodium alginate-cross-linked polymyxin B sulphate-loaded solid lipid nanoparticles: Antibiotic resistance tests and HaCat and NIH/3T3 cell viability studies. Colloids and Surfaces B: Biointerfaces, 2015, 129, 191-197.	5.0	70
9	Skin Delivery and in Vitro Biological Evaluation of Trans-Resveratrol-Loaded Solid Lipid Nanoparticles for Skin Disorder Therapies. Molecules, 2016, 21, 116.	3.8	69
10	3D Printed Cartilageâ€Like Tissue Constructs with Spatially Controlled Mechanical Properties. Advanced Functional Materials, 2019, 29, 1906330.	14.9	66
11	Solid lipid nanoparticles for hydrophilic biotech drugs: Optimization and cell viability studies (Caco-2) Tj ETQq1 1	0.784314	rgBT /Overl
12	Phospholipid dry powders produced by spray drying processing: structural, thermodynamic and physical properties. Powder Technology, 2004, 145, 139-148.	4.2	61
13	Antimicrobial activity of polymyxin-loaded solid lipid nanoparticles (PLX-SLN): Characterization of physicochemical properties and in vitro efficacy. European Journal of Pharmaceutical Sciences, 2017, 106, 177-184.	4.0	57
14	Leukocyte-rich PRP for knee osteoarthritis: Current concepts. Journal of Clinical Orthopaedics and Trauma, 2019, 10, S179-S182.	1.5	53
15	Retinyl palmitate flexible polymeric nanocapsules: Characterization and permeation studies. Colloids and Surfaces B: Biointerfaces, 2010, 81, 374-380.	5.0	52
16	Solid lipid nanoparticles optimized by 22 factorial design for skin administration: Cytotoxicity in NIH3T3 fibroblasts. Colloids and Surfaces B: Biointerfaces, 2018, 171, 501-505.	5.0	51
17	Microbial production of hyaluronic acid from agricultural resource derivatives. Bioresource Technology, 2010, 101, 6506-6509.	9.6	44
18	Development and characterization of a cationic lipid nanocarrier as non-viral vector for gene therapy. European Journal of Pharmaceutical Sciences, 2015, 66, 78-82.	4.0	41

#	Article	IF	CITATIONS
19	Evaluation of the Influence of Process Parameters on the Properties of Resveratrol-Loaded NLC Using 22 Full Factorial Design. Antioxidants, 2019, 8, 272.	5.1	40
20	Production of hyaluronic acid (HA) nanoparticles by a continuous process inside microchannels: Effects of non-solvents, organic phase flow rate, and HA concentration. Chemical Engineering Science, 2012, 84, 134-141.	3.8	38
21	Nanoemulsions and nanoparticles for non-melanoma skin cancer: effects of lipid materials. Clinical and Translational Oncology, 2013, 15, 417-424.	2.4	38
22	Hydrophilic coating of mitotane-loaded lipid nanoparticles: Preliminary studies for mucosal adhesion. Pharmaceutical Development and Technology, 2013, 18, 577-581.	2.4	37
23	Hyaluronic acid behavior in oral administration and perspectives for nanotechnology-based formulations: A review. Carbohydrate Polymers, 2019, 222, 115001.	10.2	34
24	Metabolic Effects of the Initial Glucose Concentration on Microbial Production of Hyaluronic Acid. Applied Biochemistry and Biotechnology, 2010, 162, 1751-1761.	2.9	32
25	The synergy between structural stability and DNA-binding controls the antibody production in EPC/DOTAP/DOPE liposomes and DOTAP/DOPE lipoplexes. Colloids and Surfaces B: Biointerfaces, 2009, 73, 175-184.	5.0	30
26	Chitosan Cross-Linked Pentasodium Tripolyphosphate Micro/Nanoparticles Produced by Ionotropic Gelation. Sugar Tech, 2016, 18, 49-54.	1.8	30
27	Nanostructured lipid carriers loaded with free phytosterols for food applications. Food Chemistry, 2019, 298, 125053.	8.2	30
28	The crosslinking degree controls the mechanical, rheological, and swelling properties of hyaluronic acid microparticles. Journal of Biomedical Materials Research - Part A, 2015, 103, 730-737.	4.0	29
29	Attachment of Water-Soluble Proteins to the Surface of (Magnetizable) Phospholipid Colloids via NeutrAvidin-Derivatized Phospholipids. Journal of Colloid and Interface Science, 2002, 245, 274-280.	9.4	28
30	Prediction and Modulation of Platelet Recovery by Discontinuous Centrifugation of Whole Blood for the Preparation of Pure Platelet-Rich Plasma. BioResearch Open Access, 2013, 2, 307-314.	2.6	26
31	Solid-State Fermentation for Humic Acids Production by a Trichoderma reesei Strain Using an Oil Palm Empty Fruit Bunch as the Substrate. Applied Biochemistry and Biotechnology, 2014, 172, 2205-2217.	2.9	25
32	Effectiveness, against tuberculosis, of pseudo-ternary complexes: Peptide-DNA-cationic liposome. Journal of Colloid and Interface Science, 2012, 373, 102-109.	9.4	24
33	Preparation of gastro-resistant pellets containing chitosan microspheres for improvement of oral didanosine bioavailability. Journal of Pharmaceutical Analysis, 2012, 2, 188-192.	5.3	23
34	Crystallinity of Dynasan®114 and Dynasan®118 matrices for the production of stable Miglyol®-loaded nanoparticles. Journal of Thermal Analysis and Calorimetry, 2012, 108, 101-108.	3.6	23
35	Effects of soy peptone on the inoculum preparation of Streptococcus zooepidemicus for production of hyaluronic acid. Bioresource Technology, 2013, 130, 798-800.	9.6	23
36	Performance of PRP Associated with Porous Chitosan as a Composite Scaffold for Regenerative Medicine. Scientific World Journal, The, 2015, 2015, 1-12.	2.1	23

#	Article	IF	CITATIONS
37	Stabilization of porous chitosan improves the performance of its association with platelet-rich plasma as a composite scaffold. Materials Science and Engineering C, 2016, 60, 538-546.	7.3	23
38	Preparação de nanopartÃculas poliméricas a partir da polimerização de monômeros: parte I. Polimeros, 2012, 22, 96-100.	0.7	22
39	Protective efficacy of different strategies employing <i>Mycobacterium leprae</i> heat-shock protein 65 against tuberculosis. Expert Opinion on Biological Therapy, 2008, 8, 1255-1264.	3.1	21
40	Techno-Economic Analysis of a Hyaluronic Acid Production Process Utilizing Streptococcal Fermentation. Processes, 2021, 9, 241.	2.8	21
41	Elastic liposomes containing benzophenone-3 for sun protection factor enhancement. Pharmaceutical Development and Technology, 2012, 17, 661-665.	2.4	20
42	Surface miscibility of EPC/DOTAP/DOPE in binary and ternary mixed monolayers. Colloids and Surfaces B: Biointerfaces, 2011, 83, 260-269.	5.0	19
43	Preparação de nanopartÃculas poliméricas a partir de polÃmeros pré-formados: parte II. Polimeros, 2012, 22, 101-106.	0.7	19
44	Production of humic acids from oil palm empty fruit bunch by submerged fermentation with <i>Trichoderma viride</i> : Cellulosic substrates and nitrogen sources. Biotechnology Progress, 2013, 29, 631-637.	2.6	18
45	Fibrin network architectures in pure platelet-rich plasma as characterized by fiber radius and correlated with clotting time. Journal of Materials Science: Materials in Medicine, 2014, 25, 1967-1977.	3.6	18
46	In vitro performance of injectable chitosan-tripolyphosphate scaffolds combined with platelet-rich plasma. Tissue Engineering and Regenerative Medicine, 2016, 13, 21-30.	3.7	18
47	Distribution, recovery and concentration of platelets and leukocytes in L-PRP prepared by centrifugation. Colloids and Surfaces B: Biointerfaces, 2018, 161, 288-295.	5.0	18
48	The intestinal permeation of didanosine from granules containing microspheres using the everted gut sac model. Journal of Microencapsulation, 2009, 26, 523-528.	2.8	17
49	Effects of Organic Solvents on Hyaluronic Acid Nanoparticles Obtained by Precipitation and Chemical Crosslinking. Journal of Nanoscience and Nanotechnology, 2012, 12, 2849-2857.	0.9	17
50	In vivo evaluation of hydrogels of polyvinyl alcohol with and without carbon nanoparticles for osteochondral repair. Carbon, 2012, 50, 2091-2099.	10.3	16
51	PolÃmeros usados como sistemas de transporte de princÃpios ativos. Polimeros, 2011, 21, 361-368.	0.7	16
52	Waxes used as structuring agents for food organogels: A Review. Grasas Y Aceites, 2020, 71, 344.	0.9	16
53	Centrifugation Conditions in the L-PRP Preparation Affect Soluble Factors Release and Mesenchymal Stem Cell Proliferation in Fibrin Nanofibers. Molecules, 2019, 24, 2729.	3.8	14
54	Hyaluronic acid and fibrin from L-PRP form semi-IPNs with tunable properties suitable for use in regenerative medicine. Materials Science and Engineering C, 2020, 109, 110547.	7.3	14

#	Article	IF	CITATIONS
55	Nanoporous silicon microparticles embedded into oxidized hyaluronic acid/adipic acid dihydrazide hydrogel for enhanced controlled drug delivery. Microporous and Mesoporous Materials, 2021, 310, 110634.	4.4	14
56	Effects of extrusion, lipid concentration and purity on physico-chemical and biological properties of cationic liposomes for gene vaccine applications. Journal of Microencapsulation, 2012, 29, 759-769.	2.8	13
57	Hyaluronic acid depolymerization by ascorbate-redox effects on solid state cultivation of Streptococcus zooepidemicus in cashew apple fruit bagasse. World Journal of Microbiology and Biotechnology, 2012, 28, 2213-2219.	3.6	13
58	Influence of particle size and fluid fraction on rheological and extrusion properties of crosslinked hyaluronic acid hydrogel dispersions. Journal of Applied Polymer Science, 2013, 128, 2180-2185.	2.6	13
59	Structural changes and crosslinking modulated functional properties of oxi-HA/ADH hydrogels useful for regenerative purposes. European Polymer Journal, 2019, 121, 109288.	5.4	13
60	Association of Platelet-Rich Plasma and Auto-Crosslinked Hyaluronic Acid Microparticles: Approach for Orthopedic Application. Polymers, 2019, 11, 1568.	4.5	13
61	Physical approach for a quantitative analysis of the phytosterols in free phytosterol-oil blends by X-ray Rietveld method. Food Research International, 2019, 124, 2-15.	6.2	13
62	The Performance of Crosslinking with Divinyl Sulfone as Controlled by the Interplay Between the Chemical Modification and Conformation of Hyaluronic Acid. Journal of the Brazilian Chemical Society, 2015, , .	0.6	12
63	Didanosine-loaded chitosan microspheres optimized by surface-response methodology: A modified "Maximum Likelihood Classification―approach formulation for reverse transcriptase inhibitors. Biomedicine and Pharmacotherapy, 2015, 70, 46-52.	5.6	12
64	Performance of the main downstream operations on hyaluronic acid purification. Process Biochemistry, 2020, 99, 160-170.	3.7	12
65	The Influence of Mineral Ions on the Microbial Production and Molecular Weight of Hyaluronic Acid. Applied Biochemistry and Biotechnology, 2010, 162, 2125-2135.	2.9	11
66	Reflex arc recovery after spinal cord dorsal root repair with platelet rich plasma (PRP). Brain Research Bulletin, 2019, 152, 212-224.	3.0	11
67	Biomass production from <i>Trichoderma viride</i> in nonconventional oat medium. Biotechnology Progress, 2012, 28, 1245-1250.	2.6	10
68	Poly-lactide-co-glycolide Microparticle Sizes: A Rational Factorial Design and Surface Response Analysis. Journal of Nanoscience and Nanotechnology, 2006, 6, 2403-2407.	0.9	9
69	Rheological aspects of microbial hyaluronic acid. Journal of Applied Polymer Science, 2011, 122, 126-133.	2.6	8
70	Cashew apple juice as microbial cultivation medium for non-immunogenic hyaluronic acid production. Brazilian Journal of Microbiology, 2013, 44, 1097-1104.	2.0	8
71	Influence of different surfactants on the physicochemical properties of elastic liposomes. Pharmaceutical Development and Technology, 2017, 22, 360-369.	2.4	8
72	Hyaluronic Acid in the Intestinal Tract: Influence of Structure, Rheology, and Mucoadhesion on the Intestinal Uptake in Rats. Biomolecules, 2020, 10, 1422.	4.0	8

#	Article	IF	CITATIONS
73	Aerobic immobilized cells in alginate gel particles of variable density. Applied Biochemistry and Biotechnology, 1996, 57-58, 543-550.	2.9	7
74	Receptor-mediated biological responses are prolonged using hydrophobized ligands. Biosensors and Bioelectronics, 2004, 20, 1157-1164.	10.1	7
75	Oxygen Transfer in Solid-State Cultivation Under Controlled Moisture Conditions. Applied Biochemistry and Biotechnology, 2014, 174, 708-718.	2.9	7
76	Production of humic acids by solid-state fermentation of Trichoderma reesei in raw oil palm empty fruit bunch fibers. 3 Biotech, 2019, 9, 393.	2.2	7
77	Structural and surface properties control the recovery and purity of bio- hyaluronic acid upon precipitation with isopropyl alcohol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 573, 112-118.	4.7	7
78	Recovery and Purity of High Molar Mass Bio-hyaluronic Acid Via Precipitation Strategies Modulated by pH and Sodium Chloride. Applied Biochemistry and Biotechnology, 2019, 188, 527-539.	2.9	7
79	Mitotane liposomes for potential treatment of adrenal cortical carcinoma: <i>ex vivo</i> intestinal permeation and <i>inÂvivo</i> bioavailability. Pharmaceutical Development and Technology, 2020, 25, 949-961.	2.4	7
80	Oxi-HA/ADH Hydrogels: A Novel Approach in Tissue Engineering and Regenerative Medicine. Polysaccharides, 2021, 2, 477-496.	4.8	7
81	Efeito do polietilenoglicol e da albumina na imobilização de lipase microbiana e na catálise em meio orgânico. Quimica Nova, 2003, 26, 832-838.	0.3	6
82	Adsorption of antiphospholipid antibodies on affinity magnetoliposomes. Colloids and Surfaces B: Biointerfaces, 2008, 63, 249-253.	5.0	6
83	Liposomal-based lidocaine formulation for the improvement of infiltrative buccal anaesthesia. Journal of Liposome Research, 2019, 29, 66-72.	3.3	6
84	Surface-modified magnetic colloids for affinity adsorption of immunoglobulins. Journal of Magnetism and Magnetic Materials, 2008, 320, 1867-1870.	2.3	5
85	Analysis of in vivo absorption of didanosine tablets in male adult dogs by HPLC. Journal of Pharmaceutical Analysis, 2012, 2, 29-34.	5.3	5
86	The interactions between humic acids and Pluronic F127 produce nanoparticles useful for pharmaceutical applications. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	5
87	OXYGEN TRANSFER IN THE SOLID-STATE CULTIVATION OF D. monoceras ON POLYURETHANE FOAM AS AN INERT SUPPORT. Brazilian Journal of Chemical Engineering, 2016, 33, 793-799.	1.3	5
88	Structural Modifications and Solution Behavior of Hyaluronic Acid Degraded with High pH and Temperature. Applied Biochemistry and Biotechnology, 2019, 189, 424-436.	2.9	5
89	Preparation and Characterization of Solid Lipid Nanoparticles Loaded with Racemic Mitotane. Journal of Colloid Science and Biotechnology, 2013, 2, 140-145.	0.2	5
90	Characterization of lignocellulosic composition and residual lipids in empty fruit bunches from palm oil processing. Grasas Y Aceites, 2019, 70, 314.	0.9	5

#	Article	IF	CITATIONS
91	PolÃmeros sintéticos biodegradáveis: matérias-primas e métodos de produção de micropartÃculas para uso em drug delivery e liberação controlada. Polimeros, 2011, 21, 286-292.	0.7	4
92	Spinal Reflex Recovery after Dorsal Rhizotomy and Repair with Platelet-Rich Plasma (PRP) Gel Combined with Bioengineered Human Embryonic Stem Cells (hESCs). Stem Cells International, 2020, 2020, 1-16.	2.5	4
93	The Solid-State Cultivation of Streptococcus zooepidemicus in Polyurethane Foam as a Strategy for the Production of Hyaluronic Acid. Applied Biochemistry and Biotechnology, 2013, 170, 1491-1502.	2.9	3
94	Rheological properties of citrus pectin dispersions and its blends with polyquaterniumâ \in 7 and colloidal particles. Journal of Applied Polymer Science, 2014, 131, .	2.6	3
95	Sterilization of auto-crosslinked hyaluronic acid scaffolds structured in microparticles and sponges. Bio-Medical Materials and Engineering, 2015, 26, 183-191.	0.6	3
96	3D Printed Tissues: 3D Printed Cartilageâ€Like Tissue Constructs with Spatially Controlled Mechanical Properties (Adv. Funct. Mater. 51/2019). Advanced Functional Materials, 2019, 29, 1970350.	14.9	3
97	In Vitro Evaluation of Open Heart Surgery Tubing Coated with Heparin and Lipid. Artificial Organs, 2000, 24, 182-184.	1.9	2
98	Physicochemical characterization of surfactant incorporating vesicles that incorporate colloidal magnetite. Journal of Liposome Research, 2013, 23, 47-53.	3.3	2
99	Fibrin network architectures in pure platelet-rich plasma as characterized by fiber radius and correlated with clotting time. , 2014, 25, 1967.		1
100	Su.30. Mycobacterium tuberculosis Infection is Diminished in Mice Immunized by Intranasal Route with a Novel Cationic Liposome Carrying DNA-hsp65. Clinical Immunology, 2008, 127, S134.	3.2	0
101	How centrifugation influences the recovery and soy peptone incorporation in hyaluronic acid coils from fermentation. Journal of Biotechnology, 2021, 341, 121-128.	3.8	0