Ma Victoria Gil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3476696/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multivariable optimization of activated carbon production from microwave pyrolysis of brewery wastes - Application in the removal of antibiotics from water. Journal of Hazardous Materials, 2022, 431, 128556.	12.4	18
2	In situ functionalization of a cellulosic-based activated carbon with magnetic iron oxides for the removal of carbamazepine from wastewater. Environmental Science and Pollution Research, 2021, 28, 18314-18327.	5.3	23
3	Optimizing microwave-assisted production of waste-based activated carbons for the removal of antibiotics from water. Science of the Total Environment, 2021, 752, 141662.	8.0	26
4	Effects of thiol functionalization of a waste-derived activated carbon on the adsorption of sulfamethoxazole from water: Kinetic, equilibrium and thermodynamic studies. Journal of Molecular Liquids, 2021, 323, 115003.	4.9	20
5	Renewable hydrogen production from biogas by sorption enhanced steam reforming (SESR): A parametric study. Energy, 2021, 218, 119491.	8.8	33
6	Residual pyrolysis biochar as additive to enhance wood pellets quality. Renewable Energy, 2021, 180, 850-859.	8.9	13
7	Sustainable and recoverable waste-based magnetic nanocomposites used for the removal of pharmaceuticals from wastewater. Chemical Engineering Journal, 2021, 426, 129974.	12.7	11
8	Producing Magnetic Nanocomposites from Paper Sludge for the Adsorptive Removal of Pharmaceuticals from Water—A Fractional Factorial Design. Nanomaterials, 2021, 11, 287.	4.1	13
9	Integrating anaerobic digestion and pyrolysis for treating digestates derived from sewage sludge and fat wastes. Environmental Science and Pollution Research, 2020, 27, 32603-32614.	5.3	29
10	Upcycling spent brewery grains through the production of carbon adsorbents—application to the removal of carbamazepine from water. Environmental Science and Pollution Research, 2020, 27, 36463-36475.	5.3	14
11	On the effect of biogas composition on the H2 production by sorption enhanced steam reforming (SESR). Renewable Energy, 2020, 160, 575-583.	8.9	43
12	Coreâ´`Shell Molecularly Imprinted Polymers on Magnetic Yeast for the Removal of Sulfamethoxazole from Water. Polymers, 2020, 12, 1385.	4.5	22
13	Highly selective CO removal by sorption enhanced Boudouard reaction for hydrogen production. Catalysis Science and Technology, 2019, 9, 4100-4107.	4.1	15
14	Fixed-bed performance of a waste-derived granular activated carbon for the removal of micropollutants from municipal wastewater. Science of the Total Environment, 2019, 683, 699-708.	8.0	22
15	Pelletization of wood and alternative residual biomass blends for producing industrial quality pellets. Fuel, 2019, 251, 739-753.	6.4	94
16	Assessing the influence of biomass properties on the gasification process using multivariate data analysis. Energy Conversion and Management, 2019, 184, 649-660.	9.2	39
17	Coal and biomass cofiring. , 2019, , 117-140.		20
18	Obtaining granular activated carbon from paper mill sludge – A challenge for application in the removal of pharmaceuticals from wastewater. Science of the Total Environment, 2019, 653, 393-400.	8.0	43

MA VICTORIA GIL

#	Article	IF	CITATIONS
19	Production of highly efficient activated carbons from industrial wastes for the removal of pharmaceuticals from water—A full factorial design. Journal of Hazardous Materials, 2019, 370, 212-218.	12.4	48
20	Unconventional biomass fuels for steam gasification: Kinetic analysis and effect of ash composition on reactivity. Energy, 2018, 155, 426-437.	8.8	48
21	Standing out the key role of ultramicroporosity to tailor biomass-derived carbons for CO2 capture. Journal of CO2 Utilization, 2018, 26, 1-7.	6.8	31
22	Production of high pressure pure H2 by pressure swing sorption enhanced steam reforming (PS-SESR) of byproducts in biorefinery. Applied Energy, 2018, 222, 595-607.	10.1	10
23	Comparison of the gasification performance of multiple biomass types in a bubbling fluidized bed. Energy Conversion and Management, 2018, 176, 309-323.	9.2	66
24	Kinetics of CO2 adsorption on cherry stone-based carbons in CO2/CH4 separations. Chemical Engineering Journal, 2017, 307, 249-257.	12.7	148
25	Phenol-Formaldehyde Resin-Based Carbons for CO2 Separation at Sub-Atmospheric Pressures. Energies, 2016, 9, 189.	3.1	11
26	Effect of operating conditions on the sorption enhanced steam reforming of blends of acetic acid and acetor acid and acetore as bio-oil model compounds. Applied Energy, 2016, 177, 579-590.	10.1	52
27	Dynamic Performance of Biomass-Based Carbons for CO ₂ /CH ₄ Separation. Approximation to a Pressure Swing Adsorption Process for Biogas Upgrading. Energy & Fuels, 2016, 30, 5005-5015.	5.1	53
28	Production of fuel-cell grade H2 by sorption enhanced steam reforming of acetic acid as a model compound of biomass-derived bio-oil. Applied Catalysis B: Environmental, 2016, 184, 64-76.	20.2	81
29	Adsorption performance indicators for the CO2/CH4 separation: Application to biomass-based activated carbons. Fuel Processing Technology, 2016, 142, 361-369.	7.2	81
30	Anaerobic Codigestion of Sludge: Addition of Butcher's Fat Waste as a Cosubstrate for Increasing Biogas Production. PLoS ONE, 2016, 11, e0153139.	2.5	44
31	Carbon adsorbents for CO2 capture from bio-hydrogen and biogas streams: Breakthrough adsorption study. Chemical Engineering Journal, 2015, 269, 148-158.	12.7	71
32	Grindability and combustion behavior of coal and torrefied biomass blends. Bioresource Technology, 2015, 191, 205-212.	9.6	101
33	Removal of fluoxetine from water by adsorbent materials produced from paper mill sludge. Journal of Colloid and Interface Science, 2015, 448, 32-40.	9.4	54
34	Biomass devolatilization at high temperature under N2 and CO2: Char morphology and reactivity. Energy, 2015, 91, 655-662.	8.8	109
35	H2 production by sorption enhanced steam reforming of biomass-derived bio-oil in a fluidized bed reactor: An assessment of the effect of operation variables using response surface methodology. Catalysis Today, 2015, 242, 19-34.	4.4	44
36	H2 production by steam reforming with in situ CO2 capture of biomass-derived bio-oil. Energy Procedia, 2014, 63, 6815-6823.	1.8	7

MA VICTORIA GIL

#	Article	IF	CITATIONS
37	Towards Bio-upgrading of Biogas: Biomass Waste-based Adsorbents. Energy Procedia, 2014, 63, 6527-6533.	1.8	29
38	Single particle ignition and combustion of anthracite, semi-anthracite and bituminous coals in air and simulated oxy-fuel conditions. Combustion and Flame, 2014, 161, 1096-1108.	5.2	174
39	Combustion of single biomass particles in air and in oxy-fuel conditions. Biomass and Bioenergy, 2014, 64, 162-174.	5.7	138
40	Production of fuel-cell grade hydrogen by sorption enhanced water gas shift reaction using Pd/Ni–Co catalysts. Applied Catalysis B: Environmental, 2014, 150-151, 585-595.	20.2	36
41	Multifunctional Pd/Ni–Co Catalyst for Hydrogen Production by Chemical Looping Coupled With Steam Reforming of Acetic Acid. ChemSusChem, 2014, 7, 3063-3077.	6.8	42
42	Production of adsorbents by pyrolysis of paper mill sludge and application on the removal of citalopram from water. Bioresource Technology, 2014, 166, 335-344.	9.6	92
43	Cyclic operation of a fixed-bed pressure and temperature swing process for CO2 capture: Experimental and statistical analysis. International Journal of Greenhouse Gas Control, 2013, 12, 35-43.	4.6	31
44	lgnition and NO Emissions of Coal and Biomass Blends under Different Oxy-fuel Atmospheres. Energy Procedia, 2013, 37, 1405-1412.	1.8	19
45	Response surface methodology as an efficient tool for optimizing carbon adsorbents for CO2 capture. Fuel Processing Technology, 2013, 106, 55-61.	7.2	50
46	Ignition behavior of coal and biomass blends under oxy-firing conditions with steam additions. , 2013, 3, 397-414.		14
47	Kinetic models for the oxy-fuel combustion of coal and coal/biomass blend chars obtained in N2 and CO2 atmospheres. Energy, 2012, 48, 510-518.	8.8	86
48	Production of nanoporous carbons from wood processing wastes and their use in supercapacitors and CO2 capture. Biomass and Bioenergy, 2012, 46, 145-154.	5.7	78
49	A study of oxy-coal combustion with steam addition and biomass blending by thermogravimetric analysis. Journal of Thermal Analysis and Calorimetry, 2012, 109, 49-55.	3.6	56
50	Oxy-fuel combustion kinetics and morphology of coal chars obtained in N2 and CO2 atmospheres in an entrained flow reactor. Applied Energy, 2012, 91, 67-74.	10.1	97
51	Oxy-fuel combustion of coal and biomass blends. Energy, 2012, 41, 429-435.	8.8	144
52	Gasification of rice straw in a fluidized-bed gasifier for syngas application in close-coupled boiler-gasifier systems. Bioresource Technology, 2012, 109, 206-214.	9.6	82
53	Kinetic Parameters and Reactivity for the Steam Gasification of Coal Chars Obtained under Different Pyrolysis Temperatures and Pressures. Energy & Fuels, 2011, 25, 3574-3580.	5.1	20
54	Effect of oxy-fuel combustion with steam addition on coal ignition and burnout in an entrained flow reactor. Energy, 2011, 36, 5314-5319.	8.8	105

MA VICTORIA GIL

#	Article	IF	CITATIONS
55	NO emissions in oxy oal combustion with the addition of steam in an entrained flow reactor. , 2011, 1, 180-190.		38
56	Breakthrough adsorption study of a commercial activated carbon for pre-combustion CO2 capture. Chemical Engineering Journal, 2011, 171, 549-556.	12.7	129
57	Modelling N mineralization from bovine manure and sewage sludge composts. Bioresource Technology, 2011, 102, 863-871.	9.6	35
58	Carbon stock estimates for forests in the Castilla y León region, Spain. A GIS based method for evaluating spatial distribution of residual biomass for bio-energy. Biomass and Bioenergy, 2011, 35, 243-252.	5.7	37
59	Influence of storage time on the quality and combustion behaviour of pine woodchips. Energy, 2010, 35, 3066-3071.	8.8	47
60	Intrinsic char reactivity of plastic waste (PET) during CO2 gasification. Fuel Processing Technology, 2010, 91, 1776-1781.	7.2	29
61	Application of response surface methodology to assess the combined effect of operating variables on high-pressure coal gasification for H2-rich gas production. International Journal of Hydrogen Energy, 2010, 35, 1191-1204.	7.1	72
62	Thermal behaviour and kinetics of coal/biomass blends during co-combustion. Bioresource Technology, 2010, 101, 5601-5608.	9.6	445
63	Kinetic models comparison for non-isothermal steam gasification of coal–biomass blend chars. Chemical Engineering Journal, 2010, 161, 276-284.	12.7	108
64	Co-gasification of different rank coals with biomass and petroleum coke in a high-pressure reactor for H2-rich gas production. Bioresource Technology, 2010, 101, 3230-3235.	9.6	131
65	Mechanical durability and combustion characteristics of pellets from biomass blends. Bioresource Technology, 2010, 101, 8859-8867.	9.6	186
66	Effect of the Pressure and Temperature of Devolatilization on the Morphology and Steam Gasification Reactivity of Coal Chars. Energy & Fuels, 2010, 24, 5586-5595.	5.1	29
67	Laboratory appraisal of organic carbon changes in mixtures made with different inorganic wastes. Waste Management, 2009, 29, 2931-2938.	7.4	5
68	Characterization of different compost extracts using Fourier-transform infrared spectroscopy (FTIR) and thermal analysis. Biodegradation, 2008, 19, 815-830.	3.0	111
69	Co-combustion of different sewage sludge and coal: A non-isothermal thermogravimetric kinetic analysis. Bioresource Technology, 2008, 99, 6311-6319.	9.6	153
70	Fertilization of maize with compost from cattle manure supplemented with additional mineral nutrients. Waste Management, 2008, 28, 1432-1440.	7.4	99
71	Assessing the agronomic and environmental effects of the application of cattle manure compost on soil by multivariate methods. Bioresource Technology, 2008, 99, 5763-5772.	9.6	39