Andrew V Suarez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3476257/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Estimating species relative abundances from museum records. Methods in Ecology and Evolution, 2023, 14, 431-443.	2.2	14
2	ATLANTIC ANTS: a data set of ants in Atlantic Forests of South America. Ecology, 2022, 103, e03580.	1.5	9
3	Seed fate in antâ€mediated dispersal: Seed dispersal effectiveness in the <i>Ectatomma ruidum</i> (Formicidae)— <i>Zanthoxylum ekmanii</i> (Rutaceae) system. Biotropica, 2022, 54, 764-775.	0.8	2
4	Muscle Fatigue in the Latch-Mediated Spring Actuated Mandibles of Trap-Jaw Ants. Integrative and Comparative Biology, 2022, 62, 1217-1226.	0.9	4
5	Can variation in seed removal patterns of Neotropical pioneer tree species be explained by local ant community composition?. Biotropica, 2021, 53, 619-631.	0.8	5
6	Functional innovation promotes diversification of form in the evolution of an ultrafast trap-jaw mechanism in ants. PLoS Biology, 2021, 19, e3001031.	2.6	35
7	Intra―and interspecific variation in trophic ecology of â€~predatory' ants in the subfamily Ponerinae. Ecological Entomology, 2020, 45, 444-455.	1.1	7
8	Analysis of Recent Interception Records Reveals Frequent Transport of Arboreal Ants and Potential Predictors for Ant Invasion in Taiwan. Insects, 2020, 11, 356.	1.0	8
9	"Simple―Biomechanical Model for Ants Reveals How Correlated Evolution among Body Segments Minimizes Variation in Center of Mass as Heads Get Larger. Integrative and Comparative Biology, 2020, 60, 1193-1207.	0.9	17
10	From <scp>eDNA</scp> to citizen science: emerging tools for the early detection of invasive species. Frontiers in Ecology and the Environment, 2020, 18, 194-202.	1.9	122
11	The evolution of conspecific acceptance threshold models. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190475.	1.8	11
12	Correlates and Consequences of Worker Polymorphism in Ants. Annual Review of Entomology, 2018, 63, 575-598.	5.7	83
13	Co-occurrence Patterns in a Subtropical Ant Community Revealed by Complementary Sampling Methodologies. Environmental Entomology, 2018, 47, 1402-1412.	0.7	3
14	Behavioural variation and plasticity along an invasive ant introduction pathway. Journal of Animal Ecology, 2018, 87, 1653-1666.	1.3	15
15	Taxon cycle predictions supported by modelâ€based inference in Indoâ€Pacific trapâ€jaw ants (Hymenoptera:) T	ETQq1 1	0.784314 g
16	Symbiotic bacterial communities in ants are modified by invasion pathway bottlenecks and alter host behavior. Ecology, 2017, 98, 861-874.	1.5	16
17	By their own devices: invasive Argentine ants have shifted diet without clear aid from symbiotic microbes. Molecular Ecology, 2017, 26, 1608-1630.	2.0	36
18	Subcaste-specific evolution of head size in the ant genus <i>Pheidole</i> . Biological Journal of the Linnean Society, 2016, 118, 472-485.	0.7	19

ANDREW V SUAREZ

•

#	Article	IF	CITATIONS
19	Urbana House Ants 2.0: Revisiting M. R. Smith's 1926 Survey of House-Infesting Ants in Central Illinois After 87 Years. American Entomologist, 2016, 62, 182-193.	0.1	3
20	Research Priorities from Animal Behaviour for Maximising Conservation Progress. Trends in Ecology and Evolution, 2016, 31, 953-964.	4.2	121
21	Molecular phylogenetics and diversification of trap-jaw ants in the genera Anochetus and Odontomachus (Hymenoptera: Formicidae). Molecular Phylogenetics and Evolution, 2016, 103, 143-154.	1.2	30
22	Comparative analysis of fertility signals and sex-specific cuticular chemical profiles of <i>Odontomachus</i> trap-jaw ants. Journal of Experimental Biology, 2016, 219, 419-430.	0.8	31
23	Mandible-Powered Escape Jumps in Trap-Jaw Ants Increase Survival Rates during Predator-Prey Encounters. PLoS ONE, 2015, 10, e0124871.	1.1	37
24	How Do Genomes Create Novel Phenotypes? Insights from the Loss of the Worker Caste in Ant Social Parasites. Molecular Biology and Evolution, 2015, 32, 2919-2931.	3.5	40
25	Global invasion history of the tropical fire ant: a stowaway on the first global trade routes. Molecular Ecology, 2015, 24, 374-388.	2.0	68
26	A social insect fertility signal is dependent on chemical context. Biology Letters, 2015, 11, 20140947.	1.0	44
27	Effect of Carbohydrate Supplementation on Investment into Offspring Number, Size, and Condition in a Social Insect. PLoS ONE, 2015, 10, e0132440.	1.1	25
28	Foraging Ecology of the Tropical Giant Hunting Ant <i>Dinoponera australis</i> (Hymenoptera <i>:</i>) Tj ETQq	0 0 0 rgBT	Overlock 10
29	Intercontinental differences in resource use reveal the importance of mutualisms in fire ant invasions. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20639-20644.	3.3	104
30	Contrasting effects of an invasive ant on a native and an invasive plant. Biological Invasions, 2010, 12, 3123-3133.	1.2	37
31	The trophic ecology of castes in harvester ant colonies. Functional Ecology, 2010, 24, 122-130.	1.7	41
32	Canopy and litter ant assemblages share similar climate–species density relationships. Biology Letters, 2010, 6, 769-772.	1.0	23
33	Biogeographic and Taxonomic Patterns of Introduced Ants. , 2009, , 233-244.		19
34	Increased abundance of native and nonâ€native spiders with habitat fragmentation. Diversity and Distributions, 2008, 14, 655-665.	1.9	30
35	Combined modelling of distribution and niche in invasion biology: a case study of two invasive <i>Tetramorium</i> ant species. Diversity and Distributions, 2008, 14, 538-545.	1.9	96
36	The evolutionary consequences of biological invasions. Molecular Ecology, 2008, 17, 351-360.	2.0	289

#	Article	IF	CITATIONS
37	From The Cover: The role of opportunity in the unintentional introduction of nonnative ants. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17032-17035.	3.3	121
38	The Value of Museum Collections for Research and Society. BioScience, 2004, 54, 66.	2.2	538
39	The Colony Structure and Population Biology of Invasive Ants. Conservation Biology, 2003, 17, 48-58.	2.4	177
40	Genetic diversity, asymmetrical aggression, and recognition in a widespread invasive species. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1078-1083.	3.3	227
41	ROLE OF ABIOTIC FACTORS IN GOVERNING SUSCEPTIBILITY TO INVASION: A TEST WITH ARGENTINE ANTS. Ecology, 2002, 83, 1610-1619.	1.5	191
42	The Causes and Consequences of Ant Invasions. Annual Review of Ecology, Evolution, and Systematics, 2002, 33, 181-233.	6.7	1,068
43	BOTTOM-UP EFFECTS ON PERSISTENCE OF A SPECIALIST PREDATOR: ANT INVASIONS AND HORNED LIZARDS. , 2002, 12, 291-298.		102
44	Spatial Patterns in the Abundance of the Coastal Horned Lizard. Conservation Biology, 2002, 16, 205-215.	2.4	66
45	Conservation of the Common Chameleon. Conservation Biology, 2002, 16, 1665-1665.	2.4	1
46	Relationships among native and introduced populations of the Argentine ant (Linepithema humile) and the source of introduced populations. Molecular Ecology, 2001, 10, 2151-2161.	2.0	128
47	Extinction and Colonization of Birds on Habitat Islands. Conservation Biology, 2001, 15, 159-172.	2.4	101
48	Extinction and Colonization of Birds on Habitat Islands. , 2001, 15, 159.		37
49	Role of Propagule Size in the Success of Incipient Colonies of the Invasive Argentine Ant. Conservation Biology, 2000, 14, 559-563.	2.4	79
50	ARTHROPODS IN URBAN HABITAT FRAGMENTS IN SOUTHERN CALIFORNIA: AREA, AGE, AND EDGE EFFECTS. , 2000, 10, 1230-1248.		323
51	PREY SELECTION IN HORNED LIZARDS FOLLOWING THE INVASION OF ARGENTINE ANTS IN SOUTHERN CALIFORNIA. , 2000, 10, 711-725.		105
52	Title is missing!. Biological Invasions, 1999, 1, 43-53.	1.2	219
53	Animal behavior: an essential component of invasion biology. Trends in Ecology and Evolution, 1999, 14, 328-330.	4.2	358
54	Flowering Phenology and Pollination of Cobaea aschersoniana (Polemoniaceae)1. Biotropica, 1998, 30, 145-148.	0.8	4

#	Article	IF	CITATIONS
55	EFFECTS OF FRAGMENTATION AND INVASION ON NATIVE ANT COMMUNITIES IN COASTAL SOUTHERN CALIFORNIA. Ecology, 1998, 79, 2041-2056.	1.5	343
56	Nesting Success of a Disturbance-Dependent Songbird on Different Kinds of Edges. Exito de Nidacion de un Ave Paserina Dependiente de Disturbaciones en Diferentes Tipos de Bordes. Conservation Biology, 1997, 11, 928-935.	2.4	105
57	Queen pheromones out of context: a comment on Holman. Behavioral Ecology, 0, , .	1.0	1
58	Native and introduced Argentine ant populations are characterised by distinct transcriptomic signatures associated with behaviour and immunity. NeoBiota, 0, 49, 105-126.	1.0	9
59	Ant interceptions reveal roles of transport and commodity in identifying biosecurity risk pathways into Australia. NeoBiota, 0, 53, 1-24.	1.0	14