
Andrew V Suarez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3476257/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Causes and Consequences of Ant Invasions. Annual Review of Ecology, Evolution, and Systematics, 2002, 33, 181-233.	6.7	1,068
2	The Value of Museum Collections for Research and Society. BioScience, 2004, 54, 66.	2.2	538
3	Animal behavior: an essential component of invasion biology. Trends in Ecology and Evolution, 1999, 14, 328-330.	4.2	358
4	EFFECTS OF FRAGMENTATION AND INVASION ON NATIVE ANT COMMUNITIES IN COASTAL SOUTHERN CALIFORNIA. Ecology, 1998, 79, 2041-2056.	1.5	343
5	ARTHROPODS IN URBAN HABITAT FRAGMENTS IN SOUTHERN CALIFORNIA: AREA, AGE, AND EDGE EFFECTS. , 2000, 10, 1230-1248.		323
6	The evolutionary consequences of biological invasions. Molecular Ecology, 2008, 17, 351-360.	2.0	289
7	Genetic diversity, asymmetrical aggression, and recognition in a widespread invasive species. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1078-1083.	3.3	227
8	Title is missing!. Biological Invasions, 1999, 1, 43-53.	1.2	219
9	ROLE OF ABIOTIC FACTORS IN GOVERNING SUSCEPTIBILITY TO INVASION: A TEST WITH ARGENTINE ANTS. Ecology, 2002, 83, 1610-1619.	1.5	191
10	The Colony Structure and Population Biology of Invasive Ants. Conservation Biology, 2003, 17, 48-58.	2.4	177
11	Relationships among native and introduced populations of the Argentine ant (Linepithema humile) and the source of introduced populations. Molecular Ecology, 2001, 10, 2151-2161.	2.0	128
12	From <scp>eDNA</scp> to citizen science: emerging tools for the early detection of invasive species. Frontiers in Ecology and the Environment, 2020, 18, 194-202.	1.9	122
13	From The Cover: The role of opportunity in the unintentional introduction of nonnative ants. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17032-17035.	3.3	121
14	Research Priorities from Animal Behaviour for Maximising Conservation Progress. Trends in Ecology and Evolution, 2016, 31, 953-964.	4.2	121
15	Nesting Success of a Disturbance-Dependent Songbird on Different Kinds of Edges. Exito de Nidacion de un Ave Paserina Dependiente de Disturbaciones en Diferentes Tipos de Bordes. Conservation Biology, 1997, 11, 928-935.	2.4	105
16	PREY SELECTION IN HORNED LIZARDS FOLLOWING THE INVASION OF ARGENTINE ANTS IN SOUTHERN CALIFORNIA. , 2000, 10, 711-725.		105
17	Intercontinental differences in resource use reveal the importance of mutualisms in fire ant invasions. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20639-20644.	3.3	104
18	BOTTOM-UP EFFECTS ON PERSISTENCE OF A SPECIALIST PREDATOR: ANT INVASIONS AND HORNED LIZARDS. , 2002, 12, 291-298.		102

ANDREW V SUAREZ

#	Article	IF	CITATIONS
19	Extinction and Colonization of Birds on Habitat Islands. Conservation Biology, 2001, 15, 159-172.	2.4	101
20	Combined modelling of distribution and niche in invasion biology: a case study of two invasive <i>Tetramorium</i> ant species. Diversity and Distributions, 2008, 14, 538-545.	1.9	96
21	Correlates and Consequences of Worker Polymorphism in Ants. Annual Review of Entomology, 2018, 63, 575-598.	5.7	83
22	Role of Propagule Size in the Success of Incipient Colonies of the Invasive Argentine Ant. Conservation Biology, 2000, 14, 559-563.	2.4	79
23	Global invasion history of the tropical fire ant: a stowaway on the first global trade routes. Molecular Ecology, 2015, 24, 374-388.	2.0	68
24	Spatial Patterns in the Abundance of the Coastal Horned Lizard. Conservation Biology, 2002, 16, 205-215.	2.4	66
25	A social insect fertility signal is dependent on chemical context. Biology Letters, 2015, 11, 20140947.	1.0	44
26	The trophic ecology of castes in harvester ant colonies. Functional Ecology, 2010, 24, 122-130.	1.7	41
27	How Do Genomes Create Novel Phenotypes? Insights from the Loss of the Worker Caste in Ant Social Parasites. Molecular Biology and Evolution, 2015, 32, 2919-2931.	3.5	40
28	Contrasting effects of an invasive ant on a native and an invasive plant. Biological Invasions, 2010, 12, 3123-3133.	1.2	37
29	Mandible-Powered Escape Jumps in Trap-Jaw Ants Increase Survival Rates during Predator-Prey Encounters. PLoS ONE, 2015, 10, e0124871.	1.1	37
30	Extinction and Colonization of Birds on Habitat Islands. , 2001, 15, 159.		37
31	By their own devices: invasive Argentine ants have shifted diet without clear aid from symbiotic microbes. Molecular Ecology, 2017, 26, 1608-1630.	2.0	36
32	Functional innovation promotes diversification of form in the evolution of an ultrafast trap-jaw mechanism in ants. PLoS Biology, 2021, 19, e3001031.	2.6	35
33	Comparative analysis of fertility signals and sex-specific cuticular chemical profiles of <i>Odontomachus</i> trap-jaw ants. Journal of Experimental Biology, 2016, 219, 419-430.	0.8	31
34	Increased abundance of native and nonâ€native spiders with habitat fragmentation. Diversity and Distributions, 2008, 14, 655-665.	1.9	30
35	Molecular phylogenetics and diversification of trap-jaw ants in the genera Anochetus and Odontomachus (Hymenoptera: Formicidae). Molecular Phylogenetics and Evolution, 2016, 103, 143-154.	1.2	30

Taxon cycle predictions supported by modelâ \in based inference in Indoâ \in Pacific trapâ \in jaw ants (Hymenoptera:) Tj ETOq0 0 0 rgBT /Overl

ANDREW V SUAREZ

#	Article	IF	CITATIONS
37	Effect of Carbohydrate Supplementation on Investment into Offspring Number, Size, and Condition in a Social Insect. PLoS ONE, 2015, 10, e0132440.	1.1	25
38	Canopy and litter ant assemblages share similar climate–species density relationships. Biology Letters, 2010, 6, 769-772.	1.0	23
39	Subcaste-specific evolution of head size in the ant genus <i>Pheidole</i> . Biological Journal of the Linnean Society, 2016, 118, 472-485.	0.7	19
40	Biogeographic and Taxonomic Patterns of Introduced Ants. , 2009, , 233-244.		19
41	"Simple―Biomechanical Model for Ants Reveals How Correlated Evolution among Body Segments Minimizes Variation in Center of Mass as Heads Get Larger. Integrative and Comparative Biology, 2020, 60, 1193-1207.	0.9	17
42	Symbiotic bacterial communities in ants are modified by invasion pathway bottlenecks and alter host behavior. Ecology, 2017, 98, 861-874.	1.5	16
43	Behavioural variation and plasticity along an invasive ant introduction pathway. Journal of Animal Ecology, 2018, 87, 1653-1666.	1.3	15
44	Foraging Ecology of the Tropical Giant Hunting Ant <i>Dinoponera australis</i> (Hymenoptera <i>:</i>) Tj ETQq	0 0 0 gggBT	/Overlock 10
45	Estimating species relative abundances from museum records. Methods in Ecology and Evolution, 2023, 14, 431-443.	2.2	14
46	Ant interceptions reveal roles of transport and commodity in identifying biosecurity risk pathways into Australia. NeoBiota, 0, 53, 1-24.	1.0	14
47	The evolution of conspecific acceptance threshold models. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190475.	1.8	11
48	Native and introduced Argentine ant populations are characterised by distinct transcriptomic signatures associated with behaviour and immunity. NeoBiota, 0, 49, 105-126.	1.0	9
49	ATLANTIC ANTS: a data set of ants in Atlantic Forests of South America. Ecology, 2022, 103, e03580.	1.5	9
50	Analysis of Recent Interception Records Reveals Frequent Transport of Arboreal Ants and Potential Predictors for Ant Invasion in Taiwan. Insects, 2020, 11, 356.	1.0	8
51	Intra―and interspecific variation in trophic ecology of â€~predatory' ants in the subfamily Ponerinae. Ecological Entomology, 2020, 45, 444-455.	1.1	7
52	Can variation in seed removal patterns of Neotropical pioneer tree species be explained by local ant community composition?. Biotropica, 2021, 53, 619-631.	0.8	5
53	Flowering Phenology and Pollination of Cobaea aschersoniana (Polemoniaceae)1. Biotropica, 1998, 30, 145-148	0.8	4

54Muscle Fatigue in the Latch-Mediated Spring Actuated Mandibles of Trap-Jaw Ants. Integrative and
Comparative Biology, 2022, 62, 1217-1226.0.94

ANDREW V SUAREZ

#	Article	IF	CITATIONS
55	Urbana House Ants 2.0: Revisiting M. R. Smith's 1926 Survey of House-Infesting Ants in Central Illinois After 87 Years. American Entomologist, 2016, 62, 182-193.	0.1	3
56	Co-occurrence Patterns in a Subtropical Ant Community Revealed by Complementary Sampling Methodologies. Environmental Entomology, 2018, 47, 1402-1412.	0.7	3
57	Seed fate in antâ€mediated dispersal: Seed dispersal effectiveness in the <i>Ectatomma ruidum</i> (Formicidae)— <i>Zanthoxylum ekmanii</i> (Rutaceae) system. Biotropica, 2022, 54, 764-775.	0.8	2
58	Conservation of the Common Chameleon. Conservation Biology, 2002, 16, 1665-1665.	2.4	1
59	Queen pheromones out of context: a comment on Holman. Behavioral Ecology, 0, , .	1.0	1