Alessandro Veltri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3476091/publications.pdf Version: 2024-02-01

ALESSANDRO VELTRI

#	Article	IF	CITATIONS
1	Optical trapping of gain-assisted plasmonic nano-shells: theorical study of the optical forces in a pumped regime below the emission threshold. , 2021, , .		1
2	Gain-Assisted Optomechanical Position Locking of Metal/Dielectric Nanoshells in Optical Potentials. ACS Photonics, 2020, 7, 1262-1270.	6.6	15
3	Plasmon-mediated discrete diffraction behaviour of an array of responsive waveguides. Nanoscale, 2019, 11, 17931-17938.	5.6	0
4	The POLICRYPS liquid-crystalline structure for optical applications. Advanced Optical Technologies, 2018, 7, 273-289.	1.7	2
5	Polarization-dependent strong coupling between silver nanorods and photochromic molecules. Beilstein Journal of Nanotechnology, 2018, 9, 2657-2664.	2.8	5
6	Resonant Gain Singularities in 1D and 3D Metal/Dielectric Multilayered Nanostructures. ACS Nano, 2017, 11, 1012-1025.	14.6	48
7	Photo-thermal study of a layer of randomly distributed gold nanoparticles: from nano-localization to macro-scale effects. Journal Physics D: Applied Physics, 2017, 50, 435302.	2.8	23
8	Multipolar, time-dynamical model for the loss compensation and lasing of a spherical plasmonic nanoparticle spaser immersed in an active gain medium. Scientific Reports, 2016, 6, 33018.	3.3	21
9	Nematic liquid crystals used to control photo-thermal effects in gold nanoparticles. , 2016, , .		2
10	Optical bistability in Ag-Al 2 O 3 one-dimensional photonic crystals. Europhysics Letters, 2015, 112, 14005.	2.0	1
11	Photo-thermal effects in gold nanoparticles dispersed in thermotropic nematic liquid crystals. Physical Chemistry Chemical Physics, 2015, 17, 20281-20287.	2.8	46
12	Loss-Mitigated Collective Resonances in Gain-Assisted Plasmonic Mesocapsules. ACS Photonics, 2014, 1, 371-376.	6.6	29
13	Reversible Strong Coupling in Silver Nanoparticle Arrays Using Photochromic Molecules. Nano Letters, 2013, 13, 282-286.	9.1	93
14	POLICRYPS composite structures: realization, characterization and exploitation for electro-optical and all-optical applications. Liquid Crystals Reviews, 2013, 1, 2-19.	4.1	12
15	Optical response of a metallic nanoparticle immersed in a medium with optical gain. Physical Review B, 2012, 85, .	3.2	31
16	Gain functionalized core–shell nanoparticles: the way to selectively compensate absorptive losses. Journal of Materials Chemistry, 2012, 22, 8846.	6.7	28
17	HOLOGRAPHIC GRATING DESIGNED FOR THE STABILITY CONTROL OF AN ACTIVE INTERFEROMETRIC SETUP. Journal of Nonlinear Optical Physics and Materials, 2011, 20, 15-21.	1.8	1
18	Blue-shifted random-laser-mode selection in gain-assisted anisotropic complex fluids. Physical Review E, 2011, 83, 041711.	2.1	5

ALESSANDRO VELTRI

#	Article	IF	CITATIONS
19	Publisher's Note: Blue-shifted random-laser-mode selection in gain-assisted anisotropic complex fluids [Phys. Rev. E83, 041711 (2011)]. Physical Review E, 2011, 83, .	2.1	Ο
20	Composite Holographic Gratings Containing Lightâ€Responsive Liquid Crystals for Visible Bichromatic Switching. Advanced Materials, 2010, 22, 2316-2319.	21.0	55
21	POLICRYPS: a liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications. Journal of Optics, 2009, 11, 024017.	1.5	55
22	Designs for electromagnetic cloaking a three-dimensional arbitrary shaped star-domain. Optics Express, 2009, 17, 20494.	3.4	8
23	Characterization of an active control system for holographic setup stabilization. Applied Optics, 2008, 47, 1363.	2.1	15
24	POLICRYPS structures as switchable optical phase modulators. Optics Express, 2008, 16, 7619.	3.4	34
25	Light scattering and lasing in dye-doped nematic liquid crystals. , 2008, , .		Ο
26	Different reorientational regimes in a liquid crystalline medium undergoing multiple irradiation. , 2008, , .		0
27	All-optical switching of holographic gratings made of polymer-liquid-crystal-polymer slices containing azo-compounds. Applied Physics Letters, 2008, 93, .	3.3	41
28	Model for Light Scattering and Lasing in Dye-Doped Nematic Liquid Crystals. Molecular Crystals and Liquid Crystals, 2008, 488, 317-326.	0.9	3
29	MODEL FOR MOLECULAR DIRECTOR CONFIGURATION IN A LIQUID CRYSTAL CELL WITH MULTIPLE INTERFACES. Journal of Nonlinear Optical Physics and Materials, 2007, 16, 199-206.	1.8	5
30	Theoretical Characterization of the Holographic Recording of Diffraction Grating in Multicomponent Media. Molecular Crystals and Liquid Crystals, 2007, 465, 187-192.	0.9	1
31	Non-Linear Effects in NLC Media Undergoing Two Beams Irradiation. Molecular Crystals and Liquid Crystals, 2007, 465, 71-80.	0.9	1
32	Nematic liquid crystal cells for optical spatial solitons (Nematicons). , 2007, , .		0
33	Different reorientational regimes in a liquid crystalline medium undergoing multiple irradiation. Optics Express, 2007, 15, 1663.	3.4	6
34	Two-Wave Coupling during the Formation of POLICRYPS Diffraction Gratings: Experimental Results Theoretical Model. Molecular Crystals and Liquid Crystals, 2006, 454, 273/[675]-284/[686].	0.9	3
35	In situ optical control and stabilization of the curing process of holographic gratings with a nematic film-polymer-slice sequence structure. Applied Optics, 2006, 45, 3721.	2.1	45
36	POLICRYPS Switchable Holographic Grating: A Promising Grating Electro-Optical Pixel for High Resolution Display Application. Journal of Display Technology, 2006, 2, 38-51.	1.2	24

ALESSANDRO VELTRI

#	Article	IF	CITATIONS
37	Model for two-beam coupling during the formation of holographic gratings with a nematic film-polymer-slice sequence structure. Applied Physics Letters, 2005, 87, 141108.	3.3	4
38	Realization of POLICRYPS Gratings: Optical and Electro-Optical Properties. Molecular Crystals and Liquid Crystals, 2005, 441, 111-129.	0.9	2
39	Kogelnik-like model for the diffraction efficiency of POLICRYPS gratings. Journal of the Optical Society of America B: Optical Physics, 2005, 22, 735.	2.1	27
40	Observation of two-wave coupling during the formation of POLICRYPS diffraction gratings. Optics Letters, 2005, 30, 1840.	3.3	14
41	Dynamical behaviour of holographic gratings with a nematic filmPolymer slice sequence structure. European Physical Journal E, 2004, 15, 47-52.	1.6	15
42	Model for the photoinduced formation of diffraction gratings in liquid-crystalline composite materials. Applied Physics Letters, 2004, 84, 3492-3494.	3.3	58
43	Radiative Intermittent Events during Fermi's Stochastic Acceleration. Physical Review Letters, 2004, 92, 143901.	7.8	37
44	Characterization of the diffraction efficiency of new holographic gratings with a nematic film–polymer-slice sequence structure. Journal of the Optical Society of America B: Optical Physics, 2004, 21, 1939.	2.1	47
45	Development of a new kind of switchable holographic grating made of liquid-crystal films separated by slices of polymeric material. Optics Letters, 2004, 29, 1261.	3.3	181
46	Electro-optic properties of switchable gratings made of polymer and nematic liquid-crystal slices. Optics Letters, 2004, 29, 1405.	3.3	44
47	Optical Characterization at Wavelengths of 632.8 NM and 1549 NM of Policryps Switchable Diffraction Gratings. Molecular Crystals and Liquid Crystals, 2003, 398, 223-233.	0.9	10
48	Gain-driven singular resonances in metal core/shell and nano-shell plasmonic particles. Journal of the Optical Society of America B: Optical Physics, 0, , .	2.1	1