R Louis Baumhardt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3476055/publications.pdf

Version: 2024-02-01

57	1,521	21	37
papers	citations	h-index	g-index
57	57	57	1309
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Research achievements and adoption of no-till, dryland cropping in the semi-arid U.S. Great Plains. Field Crops Research, 2012, 132, 196-203.	5.1	174
2	Can weighing lysimeter ET represent surrounding field ET well enough to test flux station measurements of daily and sub-daily ET?. Advances in Water Resources, 2012, 50, 79-90.	3.8	124
3	North American Soil Degradation: Processes, Practices, and Mitigating Strategies. Sustainability, 2015, 7, 2936-2960.	3.2	99
4	Factors Related to Dryland Grain Sorghum Yield Increases: 1939 through 1997. Agronomy Journal, 1999, 91, 870-875.	1.8	75
5	Rain Infiltration as Affected by Wheat Residue Amount and Distribution in Ridged Tillage. Soil Science Society of America Journal, 1996, 60, 1908-1913.	2.2	67
6	Modeling infiltration into a sealing soil. Water Resources Research, 1990, 26, 2497-2505.	4.2	63
7	Growing Dryland Grain Sorghum in Clumps to Reduce Vegetative Growth and Increase Yield. Agronomy Journal, 2006, 98, 1109-1120.	1.8	54
8	The reduction of partitioned wind and water erosion by conservation agriculture. Catena, 2017, 148, 160-167.	5.0	50
9	Effects of crop residue on soil and plant water evaporation in a dryland cotton system. Theoretical and Applied Climatology, 1996, 54, 69-84.	2.8	48
10	Comparison of sorghum classes for grain and forage yield and forage nutritive value. Field Crops Research, 2013, 142, 20-26.	5.1	46
11	Modeling long-term water use of irrigated cropping rotations in the Texas High Plains using SWAT. Irrigation Science, 2017, 35, 111-123.	2.8	39
12	Modeling Irrigation Management Strategies to Maximize Cotton Lint Yield and Water Use Efficiency. Agronomy Journal, 2009, 101, 460-468.	1.8	37
13	Growing maize in clumps as a strategy for marginal climatic conditions. Field Crops Research, 2010, 118, 115-125.	5.1	35
14	Residue and Long-Term Tillage and Crop Rotation Effects on Simulated Rain Infiltration and Sediment Transport. Soil Science Society of America Journal, 2012, 76, 1370-1378.	2.2	35
15	Calibration and Validation of the SWAT Model for Predicting Daily ET over Irrigated Crops in the Texas High Plains Using Lysimetric Data. Transactions of the ASABE, 2016, 59, 611-622.	1.1	32
16	Estimating Evapotranspiration for Dryland Cropping Systems in the Semiarid Texas High Plains Using <scp>SWAT</scp> . Journal of the American Water Resources Association, 2016, 52, 298-314.	2.4	31
17	Long‶erm Effects of Profileâ€Modifying Deep Plowing on Soil Properties and Crop Yield. Soil Science Society of America Journal, 2008, 72, 677-682.	2.2	28
18	Tillage and Cattle Grazing Effects on Soil Properties and Grain Yields in a Dryland Wheat-Sorghum-Fallow Rotation. Agronomy Journal, 2011, 103, 914-922.	1.8	27

#	Article	IF	Citations
19	Modeling the effects of management and elevation on West Texas dryland cotton production. Agricultural and Forest Meteorology, 2017, 247, 385-398.	4.8	25
20	PHYSICAL AND HYDRAULIC PROPERTIES OF A CALCIC HORIZON. Soil Science, 1993, 155, 368-375.	0.9	24
21	BIOACTIVE PHOSPHORUS LOSS IN SIMULATED RUNOFF FROM A PHOSPHORUS-ENRICHED SOIL UNDER TWO FORAGE MANAGEMENT SYSTEMS. Soil Science, 2007, 172, 721-732.	0.9	23
22	Water Budget and Yield of Dryland Cotton Intercropped with Terminated Winter Wheat. Agronomy Journal, 1999, 91, 922-927.	1.8	22
23	Suitability of Cotton as an Alternative Crop in the Ogallala Aquifer Region. Agronomy Journal, 2007, 99, 1397-1403.	1.8	21
24	Cattle Gain and Crop Yield for a Dryland Wheatâ€Sorghumâ€Fallow Rotation. Agronomy Journal, 2009, 101, 150-158.	1.8	21
25	Infiltration in Response to Water Quality, Tillage, and Gypsum. Soil Science Society of America Journal, 1992, 56, 261-266.	2.2	19
26	Seeding Practices and Cultivar Maturity Effects on Simulated Dryland Grain Sorghum Yield. Agronomy Journal, 2005, 97, 935-942.	1.8	19
27	Seeding Practices, Cultivar Maturity, and Irrigation Effects on Simulated Grain Sorghum Yield. Agronomy Journal, 2006, 98, 462-470.	1.8	19
28	Impact of deep plowing on groundwater recharge in a semiarid region: Case study, High Plains, Texas. Water Resources Research, 2008, 44, .	4.2	18
29	Energy Imbalance and Evapotranspiration Hysteresis Under an Advective Environment: Evidence From Lysimeter, Eddy Covariance, and Energy Balance Modeling. Geophysical Research Letters, 2021, 48, .	4.0	18
30	El Ni $\tilde{A}\pm o$ Southern Oscillation Effects on Dryland Crop Production in the Texas High Plains. Agronomy Journal, 2016, 108, 736-744.	1.8	17
31	Residue Management Effects on Water Use and Yield of Deficit Irrigated Cotton. Agronomy Journal, 2013, 105, 1026-1034.	1.8	16
32	Long-Term Changes in Soil Organic Carbon and Nitrogen under Semiarid Tillage and Cropping Practices. Soil Science Society of America Journal, 2015, 79, 1771-1781.	2.2	16
33	Grain Sorghum Response to Tillage Method Used during Fallow and to Limited Irrigation ¹ . Agronomy Journal, 1985, 77, 643-646.	1.8	15
34	Longâ€Term Conventional and Noâ€Tillage Effects on Field Hydrology and Yields of a Dryland Crop Rotation. Soil Science Society of America Journal, 2017, 81, 200-209.	2.2	14
35	Sorghum Management Practices Suited to Varying Irrigation Strategies: A Simulation Analysis. Agronomy Journal, 2007, 99, 665-672.	1.8	13
36	Estimation of Soil Water Balance Components Using an Iterative Procedure. Vadose Zone Journal, 2008, 7, 115-123.	2.2	13

#	Article	IF	CITATIONS
37	Evaluation of uncalibrated energy balance model (BAITSSS) for estimating evapotranspiration in a semiarid, advective climate. Hydrological Processes, 2019, 33, 2110-2130.	2.6	13
38	Residue Management Effects on Water Use and Yield of Deficit Irrigated Corn. Agronomy Journal, 2013, 105, 1035-1044.	1.8	11
39	Contrasting tillage effects on stored soil water, infiltration and evapotranspiration fluxes in a dryland rotation at two locations. Soil and Tillage Research, 2019, 190, 157-174.	5. 6	9
40	Modeling Cotton Lint Yield Response to Irrigation Management as Influenced by El Niño-Southern Oscillation. Agronomy Journal, 2014, 106, 1559-1568.	1.8	8
41	Optimizing Cotton Irrigation Strategies as Influenced by El Niño Southern Oscillation. Agronomy Journal, 2015, 107, 1895-1904.	1.8	8
42	A crop coefficient –based water use model with non-uniform root distribution. Agricultural Water Management, 2020, 228, 105892.	5. 6	8
43	Characterization of trends in reservoir storage, streamflow, and precipitation in the Canadian River watershed in New Mexico and Texas. Lake and Reservoir Management, 2015, 31, 64-79.	1.3	7
44	Crop Water Production Functions of Grain Sorghum and Winter Wheat in Kansas and Texas. Journal of Contemporary Water Research and Education, 2017, 162, 42-60.	0.7	7
45	Optimizing Dryland Crop Management to Regional Climate. Part II: U.S. Southern High Plains Grain Sorghum Production. Frontiers in Sustainable Food Systems, 2020, 3, .	3.9	7
46	Center pivot irrigation capacity effects on maize yield and profitability in the Texas High Plains. Agricultural Water Management, 2022, 261, 107335.	5. 6	7
47	Predicting soil-surface seal conductance from incipient ponding and infiltration data. Journal of Hydrology, 1991, 128, 277-291.	5.4	6
48	A User-Friendly Interactive Tool for Estimating Reference ET Using ASCE Standardized Penman-Monteith Equation. Applied Engineering in Agriculture, 2016, 32, 383-390.	0.7	6
49	Grazing and Tillage Effects on Soil Properties, Rain Infiltration, and Sediment Transport during Fallow. Soil Science Society of America Journal, 2017, 81, 1548-1556.	2.2	6
50	The synergy between water conservation and economic profitability of adopting alternative irrigation systems for cotton production in the Texas High Plains. Agricultural Water Management, 2022, 262, 107386.	5 . 6	6
51	Simulated Dryland Cotton Yield Response to Selected Scenario Factors Associated With Soil Health. Frontiers in Sustainable Food Systems, 2021, 4, .	3.9	5
52	Response of maize hybrids under limited irrigation capacities: Crop water use. Agronomy Journal, 2022, 114, 1324-1337.	1.8	4
53	Trends in Runoff From Dryland, Cropped Fields on the Texas High Plains, and Implications for Their Management. Frontiers in Sustainable Food Systems, 2020, 4, .	3.9	2
54	Controlling Stormwater Runoff That Limits Water Availability and Dryland Crop Productivity. Frontiers in Sustainable Food Systems, 2020, 4, .	3.9	2

#	Article	IF	CITATIONS
55	Precipitation, runoff, and yields from terraced drylands with stubbleâ€mulch or no tillage ¹ . Agronomy Journal, 2020, 112, 3295-3305.	1.8	1
56	Climatic Risk to Cotton Production in the Ogallala Aquifer Region. , 2006, , .		1
57	Response of maize hybrids under limited irrigation capacities: Yield and yield components. Agronomy Journal, 0, , .	1.8	O