Agnese Miro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3475564/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dry powders based on PLGA nanoparticles for pulmonary delivery of antibiotics: Modulation of encapsulation efficiency, release rate and lung deposition pattern by hydrophilic polymers. Journal of Controlled Release, 2012, 157, 149-159.	9.9	240
2	Insulin-loaded PLGA/cyclodextrin large porous particles with improved aerosolization properties: In vivo deposition and hypoglycaemic activity after delivery to rat lungs. Journal of Controlled Release, 2009, 135, 25-34.	9.9	158
3	Engineered PLGA nano- and micro-carriers for pulmonary delivery: challenges and promises. Journal of Pharmacy and Pharmacology, 2012, 64, 1217-1235.	2.4	154
4	Overcoming barriers in Pseudomonas aeruginosa lung infections: Engineered nanoparticles for local delivery of a cationic antimicrobial peptide. Colloids and Surfaces B: Biointerfaces, 2015, 135, 717-725.	5.0	120
5	Cyclodextrins in the production of large porous particles: Development of dry powders for the sustained release of insulin to the lungs. European Journal of Pharmaceutical Sciences, 2006, 28, 423-432.	4.0	118
6	Improving the efficacy of inhaled drugs in cystic fibrosis: Challenges and emerging drug delivery strategies. Advanced Drug Delivery Reviews, 2014, 75, 92-111.	13.7	101
7	Spectrophotometric determination of polyethylenimine in the presence of an oligonucleotide for the characterization of controlled release formulations. Journal of Pharmaceutical and Biomedical Analysis, 2003, 31, 143-149.	2.8	93
8	Toward Repositioning Niclosamide for Antivirulence Therapy of <i>Pseudomonas aeruginosa</i> Lung Infections: Development of Inhalable Formulations through Nanosuspension Technology. Molecular Pharmaceutics, 2015, 12, 2604-2617.	4.6	64
9	Improvement of Solubility and Stability of Valsartan by Hydroxypropyl-oldbeta-Cyclodextrin. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2006, 54, 289-294.	1.6	61
10	Engineering gas-foamed large porous particles for efficient local delivery of macromolecules to the lung. European Journal of Pharmaceutical Sciences, 2010, 41, 60-70.	4.0	55
11	Modulation of drug release from hydrogels by using cyclodextrins: the case of nicardipine/l²-cyclodextrin system in crosslinked polyethylenglycol. Journal of Controlled Release, 2001, 71, 329-337.	9.9	53
12	Hybrid Lipid/Polymer Nanoparticles for Pulmonary Delivery of siRNA: Development and Fate Upon <i>In Vitro</i> Deposition on the Human Epithelial Airway Barrier. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2018, 31, 170-181.	1.4	52
13	Cyclodextrin-containing poly(ethyleneoxide) tablets for the delivery of poorly soluble drugs: Potential as buccal delivery system. International Journal of Pharmaceutics, 2006, 319, 63-70.	5.2	48
14	Chromatographic indexes on immobilized artificial membranes for the prediction of transdermal transport of drugs. Il Farmaco, 1998, 53, 655-661.	0.9	45
15	Nanoassembly of an amphiphilic cyclodextrin and Zn(<scp>ii</scp>)-phthalocyanine with the potential for photodynamic therapy of cancer. RSC Advances, 2014, 4, 43903-43911.	3.6	39
16	Polymeric Nanoparticles for Cancer Photodynamic Therapy. Topics in Current Chemistry, 2016, 370, 61-112.	4.0	38
17	Nanoassemblies based on non-ionic amphiphilic cyclodextrin hosting Zn(II)-phthalocyanine and docetaxel: Design, physicochemical properties and intracellular effects. Colloids and Surfaces B: Biointerfaces, 2016, 146, 590-597.	5.0	37
18	Hybrid Lipid/Polymer Nanoparticles to Tackle the Cystic Fibrosis Mucus Barrier in siRNA Delivery to the Lungs: Does PEGylation Make the Difference?. ACS Applied Materials & amp; Interfaces, 2022, 14, 7565-7578.	8.0	37

Agnese Miro

#	Article	IF	CITATIONS
19	Engineering poly(ethylene oxide) buccal films with cyclodextrin: A novel role for an old excipient?. International Journal of Pharmaceutics, 2013, 452, 283-291.	5.2	35
20	Pulmonary Drug Delivery: A Role for Polymeric Nanoparticles?. Current Topics in Medicinal Chemistry, 2015, 15, 386-400.	2.1	35
21	β-Cyclodextrin Nanosponges as Multifunctional Ingredient in Water-Containing Semisolid Formulations for Skin Delivery. Journal of Pharmaceutical Sciences, 2014, 103, 3941-3949.	3.3	34
22	Ultrasmall silver nanoparticles loaded in alginate–hyaluronic acid hybrid hydrogels for treating infected wounds. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 626-634.	3.4	33
23	PEGylated mucus-penetrating nanocrystals for lung delivery of a new FtsZ inhibitor against Burkholderia cenocepacia infection. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 23, 102113.	3.3	32
24	Mucoadhesive zein/beta-cyclodextrin nanoparticles for the buccal delivery of curcumin. International Journal of Pharmaceutics, 2020, 586, 119587.	5.2	30
25	Modulation of release rate and barrier transport of Diclofenac incorporated in hydrophilic matrices: Role of cyclodextrins and implications in oral drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 72, 76-82.	4.3	27
26	Skin transport of PEGylated poly(ε-caprolactone) nanoparticles assisted by (2-hydroxypropyl)-β-cyclodextrin. Journal of Colloid and Interface Science, 2015, 454, 112-120.	9.4	27
27	Use of cyclodextrins as solubilizing agents for simvastatin: Effect of hydroxypropyl-β-cyclodextrin on lactone/hydroxyacid aqueous equilibrium. International Journal of Pharmaceutics, 2011, 404, 49-56.	5.2	25
28	Diclofenac β-Cyclodextrin Binary Systems: A Study in Solution and in the Solid State. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2003, 46, 179-185.	1.6	21
29	Core–shell nanocarriers for cancer therapy. Part I: biologically oriented design rules. Expert Opinion on Drug Delivery, 2014, 11, 283-297.	5.0	21
30	Improving in vivo conversion of oleuropein into hydroxytyrosol by oral granules containing probiotic Lactobacillus plantarum 299v and an Olea europaea standardized extract. International Journal of Pharmaceutics, 2018, 543, 73-82.	5.2	20
31	PEGylated Polyester-Based Nanoncologicals. Current Topics in Medicinal Chemistry, 2014, 14, 1097-1114.	2.1	20
32	Drug/Cyclodextrin Solid Systems in the Design of Hydrophilic Matrices: A Strategy to Modulate Drug Delivery Rate. Current Drug Delivery, 2006, 3, 373-378.	1.6	19
33	Antimicrobial peptide Temporin-L complexed with anionic cyclodextrins results in a potent and safe agent against sessile bacteria. International Journal of Pharmaceutics, 2020, 584, 119437.	5.2	19
34	Large Porous Particles for Sustained Release of a Decoy Oligonucelotide and Poly(ethylenimine): Potential for Combined Therapy of Chronic <i>Pseudomonas aeruginosa</i> Lung Infections. Biomacromolecules, 2016, 17, 1561-1571.	5.4	15
35	Triamcinolone solubilization by (2-hydroxypropyl)-î²-cyclodextrin: A spectroscopic and computational approach. Carbohydrate Polymers, 2012, 90, 1288-1298.	10.2	12
36	PEI-Engineered Respirable Particles Delivering a Decoy Oligonucleotide to NF-κB: Inhibiting MUC2 Expression in LPS-Stimulated Airway Epithelial Cells. PLoS ONE, 2012, 7, e46457.	2.5	11

Agnese Miro

#	Article	IF	CITATIONS
37	Formulation and Preliminary in vivo Testing of Rufloxacin-Cyclodextrin Ophthalmic Solutions. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2002, 44, 173-176.	1.6	10
38	Combined effect of hydroxypropyl methylcellulose and hydroxypropyl-β-cyclodextrin on physicochemical and dissolution properties of celecoxib. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 59, 237-244.	1.6	10
39	Etodolac/cyclodextrin formulations: physicochemical characterization and in vivo pharmacological studies. Drug Development and Industrial Pharmacy, 2009, 35, 877-886.	2.0	9
40	Poly(ethylene oxide)/hydroxypropyl-β-cyclodextrin films for oromucosal delivery of hydrophilic drugs. International Journal of Pharmaceutics, 2017, 531, 606-613.	5.2	8
41	Alcohol-Based Hand Sanitizers: Does Gelling Agent Really Matter?. Gels, 2022, 8, 87.	4.5	5
42	Zein Beta-Cyclodextrin Micropowders for Iron Bisglycinate Delivery. Pharmaceutics, 2020, 12, 60.	4.5	4
43	Development of a Wet-Granulated Sourdough Multiple Starter for Direct Use. Foods, 2022, 11, 1278.	4.3	3
44	Compositions for health products obtained by treatment of tomato with beta-cyclodextrin. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 57, 669-674.	1.6	1