Anil R Ravindran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3475246/publications.pdf Version: 2024-02-01

ΔΝΗ Ρ. ΡΑΥΙΝΠΡΑΝ

#	Article	IF	CITATIONS
1	Hierarchical strengthening of carbon fibre composite T-joints using nanoparticles and Z-pins. Composites Part A: Applied Science and Manufacturing, 2022, 154, 106775.	7.6	10
2	Strengthening of composite T-joints using 1D and 2D carbon nanoparticles. Composite Structures, 2021, 255, 112982.	5.8	23
3	Electrical properties of 3D printed continuous carbon fibre composites made using the FDM process. Composites Part A: Applied Science and Manufacturing, 2021, 151, 106661.	7.6	25
4	Improving the delamination resistance and impact damage tolerance of carbon fibre-epoxy composites using multi-scale fibre toughening. Composites Part A: Applied Science and Manufacturing, 2021, 150, 106624.	7.6	24
5	Liquid metal-based synthesis of high performance monolayer SnS piezoelectric nanogenerators. Nature Communications, 2020, 11, 3449.	12.8	128
6	Liquid metal synthesis of two-dimensional aluminium oxide platelets to reinforce epoxy composites. Composites Science and Technology, 2019, 181, 107708.	7.8	15
7	Hierarchical mode I and mode II interlaminar toughening of Z-pinned composites using 1D and 2D carbon nanofillers. Composites Part A: Applied Science and Manufacturing, 2019, 124, 105470.	7.6	29
8	Synergistic mode II delamination toughening of composites using multi-scale carbon-based reinforcements. Composites Part A: Applied Science and Manufacturing, 2019, 117, 103-115.	7.6	33
9	Synergistic delamination toughening of composites using multi-scale carbon reinforcements. Composites Part B: Engineering, 2019, 161, 18-28.	12.0	36
10	Fracture and fatigue behaviour of epoxy nanocomposites containing 1-D and 2-D nanoscale carbon fillers. Engineering Fracture Mechanics, 2018, 203, 102-114.	4.3	37
11	The electric field alignment of short carbon fibres to enhance the toughness of epoxy composites. Composites Part A: Applied Science and Manufacturing, 2018, 106, 11-23.	7.6	36
12	Multi-scale toughening of epoxy composites via electric field alignment of carbon nanofibres and short carbon fibres. Composites Science and Technology, 2018, 167, 115-125.	7.8	56
13	Effects of Graphene Nanoplatelet Size and Surface Area on the AC Electrical Conductivity and Dielectric Constant of Epoxy Nanocomposites. Polymers, 2018, 10, 477.	4.5	70
14	Novel Electrically Conductive Porous PDMS/Carbon Nanofiber Composites for Deformable Strain Sensors and Conductors. ACS Applied Materials & Interfaces, 2017, 9, 14207-14215.	8.0	239
15	Aligning carbon nanofibres in glass-fibre/epoxy composites to improve interlaminar toughness and crack-detection capability. Composites Science and Technology, 2017, 152, 46-56.	7.8	54
16	3D Printing of Highly Conductive Nanocomposites for the Functional Optimization of Liquid Sensors. Small, 2016, 12, 6076-6082.	10.0	91
17	Liquid Materials: 3D Printing of Highly Conductive Nanocomposites for the Functional Optimization of Liquid Sensors (Small 44/2016). Small, 2016, 12, 6176-6176.	10.0	3
18	Multi-scale toughening of fibre composites using carbon nanofibres and z-pins. Composites Science and Technology, 2016, 131, 98-109.	7.8	81