Timothy C Humphrey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3475128/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SETD2-Dependent Histone H3K36 Trimethylation Is Required for Homologous Recombination Repair and Genome Stability. Cell Reports, 2014, 7, 2006-2018.	2.9	370
2	Inhibiting WEE1 Selectively Kills Histone H3K36me3-Deficient Cancers by dNTP Starvation. Cancer Cell, 2015, 28, 557-568.	7.7	244
3	A histone H3K36 chromatin switch coordinates DNA double-strand break repair pathway choice. Nature Communications, 2014, 5, 4091.	5.8	134
4	A role for human homologous recombination factors in suppressing microhomology-mediated end joining. Nucleic Acids Research, 2016, 44, 5743-5757.	6.5	83
5	Inhibition of WEE1 Is Effective in <i>TP53</i> and <i>RAS</i> Mutant Metastatic Colorectal Cancer: A Randomized Trial (FOCUS4-C) Comparing Adavosertib (AZD1775) With Active Monitoring. Journal of Clinical Oncology, 2021, 39, 3705-3715.	0.8	51
6	Break-induced ATR and Ddb1-Cul4Cdt2 ubiquitin ligase-dependent nucleotide synthesis promotes homologous recombination repair in fission yeast. Genes and Development, 2010, 24, 2705-2716.	2.7	48
7	MRG15-mediated tethering of PALB2 to unperturbed chromatin protects active genes from genotoxic stress. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7671-7676.	3.3	45
8	Misrepair in Context: TGFÎ ² Regulation of DNA Repair. Frontiers in Oncology, 2019, 9, 799.	1.3	28
9	The DNA damage checkpoint pathway promotes extensive resection and nucleotide synthesis to facilitate homologous recombination repair and genome stability in fission yeast. Nucleic Acids Research, 2014, 42, 5644-5656.	6.5	27
10	Set2 Methyltransferase Facilitates DNA Replication and Promotes Genotoxic Stress Responses through MBF-Dependent Transcription. Cell Reports, 2017, 20, 2693-2705.	2.9	26
11	SET-ting the stage for DNA repair. Nature Structural and Molecular Biology, 2014, 21, 655-657.	3.6	25
12	The spliceosome-associated protein Nrl1 suppresses homologous recombination-dependent R-loop formation in fission yeast. Nucleic Acids Research, 2016, 44, 1703-1717.	6.5	22
13	The Challenge of Combining Chemo- and Radiotherapy with Checkpoint Kinase Inhibitors. Clinical Cancer Research, 2021, 27, 937-962.	3.2	18
14	An essential role for dNTP homeostasis following CDK-induced replication stress. Journal of Cell Science, 2019, 132, .	1.2	16
15	Nucleoporin 54 contributes to homologous recombination repair and post-replicative DNA integrity. Nucleic Acids Research, 2018, 46, 7731-7746.	6.5	11
16	Homologous recombination repair intermediates promote efficient de novo telomere addition at DNA double-strand breaks. Nucleic Acids Research, 2020, 48, 1271-1284.	6.5	10
17	Expression of the cancer-associated DNA polymerase ε P286R in fission yeast leads to translesion synthesis polymerase dependent hypermutation and defective DNA replication. PLoS Genetics, 2021, 17, e1009526.	1.5	8
18	Use of theHPRTgene to study nuclease-induced DNA double-strand break repair. Human Molecular Genetics, 2015, 24, ddv409.	1.4	6

TIMOTHY C HUMPHREY

#	Article	IF	CITATIONS
19	Using Pulsed-Field Gel Electrophoresis to Analyze <i>Schizosaccharomyces pombe</i> Chromosomes and Chromosomal Elements. Cold Spring Harbor Protocols, 2018, 2018, pdb.prot092023.	0.2	5
20	DNA Double-Strand Break Repair Assay. Cold Spring Harbor Protocols, 2018, 2018, pdb.prot092031.	0.2	5
21	Identifying new targets for cancer drug 5′-fluorouracil. Cell Cycle, 2015, 14, 1353-1353.	1.3	3
22	Analysis of DNA Metabolism in Fission Yeast. Cold Spring Harbor Protocols, 2018, 2018, pdb.top079863.	0.2	1