Wanderson Romao

List of Publications by Citations

Source: https://exaly.com/author-pdf/3475010/wanderson-romao-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 190
 3,572
 31
 49

 papers
 citations
 h-index
 g-index

 218
 4,163
 3.7
 5.3

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
190	Ambient mass spectrometry: bringing MS into the "real world". <i>Analytical and Bioanalytical Chemistry</i> , 2010 , 398, 265-94	4.4	278
189	Venturi easy ambient sonic-spray ionization. <i>Analytical Chemistry</i> , 2011 , 83, 1375-80	7.8	114
188	Monitoring the liquid/liquid extraction of naphthenic acids in brazilian crude oil using electrospray ionization FT-ICR mass spectrometry (ESI FT-ICR MS). <i>Fuel</i> , 2013 , 108, 647-655	7.1	89
187	Instantaneous chemical profiles of banknotes by ambient mass spectrometry. <i>Analyst, The</i> , 2010 , 135, 2533-9	5	79
186	Portable near infrared spectroscopy applied to quality control of Brazilian coffee. <i>Talanta</i> , 2018 , 176, 59-68	6.2	74
185	Characterization of polar compounds in a true boiling point distillation system using electrospray ionization FT-ICR mass spectrometry. <i>Fuel</i> , 2014 , 115, 190-202	7.1	68
184	An evaluation of the aromaticity of asphaltenes using atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry [APPI(-)FT-ICR MS. Fuel, 2014, 118, 348-3	357 ¹	66
183	Characterization of thermal and catalytic pyrolysis bio-oils by high-resolution techniques: 1H NMR, GC IGC-TOFMS and FT-ICR MS. <i>Journal of Analytical and Applied Pyrolysis</i> , 2016 , 117, 257-267	6	65
182	Poly (ethylene terephthalate) thermo-mechanical and thermo-oxidative degradation mechanisms. <i>Polymer Degradation and Stability</i> , 2009 , 94, 1849-1859	4.7	64
181	FT-ICR MS analysis of asphaltenes: Asphaltenes go in, fullerenes come out. <i>Fuel</i> , 2014 , 131, 49-58	7.1	62
180	Assessing the chemical composition of bio-oils using FT-ICR mass spectrometry and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry. <i>Microchemical Journal</i> , 2014 , 117, 68-76	4.8	58
179	A new insert sample approach to paper spray mass spectrometry: a paper substrate with paraffin barriers. <i>Analyst, The</i> , 2016 , 141, 1707-13	5	49
178	Chemical profile of mango (Mangifera indica L.) using electrospray ionisation mass spectrometry (ESI-MS). <i>Food Chemistry</i> , 2016 , 204, 37-45	8.5	49
177	Fingerprinting of sildenafil citrate and tadalafil tablets in pharmaceutical formulations via X-ray fluorescence (XRF) spectrometry. <i>Journal of Pharmaceutical and Biomedical Analysis</i> , 2012 , 58, 7-11	3.5	45
176	Paper spray ionization and portable mass spectrometers: a review. <i>Analytical Methods</i> , 2019 , 11, 999-10	1332	42
175	Petroleomics by electrospray ionization FT-ICR mass spectrometry coupled to partial least squares with variable selection methods: prediction of the total acid number of crude oils. <i>Analyst, The</i> , 2014 , 139, 4908-16	5	42
174	Chemical profile of meta-chlorophenylpiperazine (m-CPP) in ecstasy tablets by easy ambient sonic-spray ionization, X-ray fluorescence, ion mobility mass spectrometry and NMR. <i>Analytical and Bioanalytical Chemistry</i> , 2011 , 400, 3053-64	4.4	42

173	Paper Spray Tandem Mass Spectrometry Based on Molecularly Imprinted Polymer Substrate for Cocaine Analysis in Oral Fluid. <i>Journal of the American Society for Mass Spectrometry</i> , 2018 , 29, 566-572	3.5	42
172	Antioxidant potential and vasodilatory activity of fermented beverages of jabuticaba berry (Myrciaria jaboticaba). <i>Journal of Functional Foods</i> , 2014 , 8, 169-179	5.1	41
171	Mechanisms involved in the gastroprotective activity of Celtis iguanaea (Jacq.) Sargent on gastric lesions in mice. <i>Journal of Ethnopharmacology</i> , 2014 , 155, 1616-24	5	41
170	Petroleum crude oil analysis using low-temperature plasma mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2013 , 27, 825-34	2.2	41
169	Poli(tereftalato de etileno), PET: uma revisö sobre os processos de sütese, mecanismos de degradaö e sua reciclagem. <i>Polimeros</i> , 2009 , 19, 121-132	1.6	40
168	Analysis of the heavy oil distillation cuts corrosion by electrospray ionization FT-ICR mass spectrometry, electrochemical impedance spectroscopy, and scanning electron microscopy. <i>Fuel</i> , 2013 , 104, 656-663	7.1	39
167	Gasoline, Kerosene, and Diesel Fingerprinting via Polar Markers. <i>Energy & Diesels</i> , 2012 , 26, 3542-354	17 .1	38
166	Analyzes of hydrocarbons by atmosphere pressure chemical ionization FT-ICR mass spectrometry using isooctane as ionizing reagent. <i>Fuel</i> , 2015 , 153, 346-354	7.1	35
165	Determination of Saturates, Aromatics, and Polars in Crude Oil by 13C NMR and Support Vector Regression with Variable Selection by Genetic Algorithm. <i>Energy & Discourt Selection Selecti</i>	4.1	35
164	Qualitative analysis of designer drugs by paper spray ionisation mass spectrometry (PSI-MS). <i>Analytical Methods</i> , 2016 , 8, 614-620	3.2	35
163	Paper spray ionization mass spectrometry applied to forensic chemistry drugs of abuse, inks and questioned documents. <i>Analytical Methods</i> , 2017 , 9, 4400-4409	3.2	35
162	Evidencing the crude oil corrosion by Raman spectroscopy, atomic force microscopy and electrospray ionization FT-ICR mass spectrometry. <i>Fuel</i> , 2015 , 139, 328-336	7.1	34
161	Characterisation and selection of demulsifiers for water-in-crude oil emulsions using low-field 1H NMR and ESIET-ICR MS. <i>Fuel</i> , 2015 , 140, 762-769	7.1	33
160	Monitoring the physicochemical degradation of coconut water using ESI-FT-ICR MS. <i>Food Chemistry</i> , 2015 , 174, 139-46	8.5	32
159	Monitoring the degradation and the corrosion of naphthenic acids by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and atomic force microscopy. <i>Fuel</i> , 2014 , 126, 85-95	7.1	31
158	Catalytic decarboxylation of naphthenic acids in crude oils. <i>Fuel</i> , 2015 , 158, 113-121	7.1	31
157	Fractionation of Asphaltene by Adsorption onto Silica and Chemical Characterization by Atmospheric Pressure Photoionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, Fourier Transform Infrared Spectroscopy Coupled to Attenuated Total Reflectance,	4.1	30
156	and Proton Nuclear Magnetic Resonance. <i>Energy & Dels</i> , 2016, 30, 5439-5448 Thin layer chromatography coupled to paper spray ionization mass spectrometry for cocaine and its adulterants analysis. <i>Forensic Science International</i> , 2016, 262, 56-65	2.6	29

155	Synthesis and characterization of aniline copolymers containing carboxylic groups and their application as sensitizer and hole conductor in solar cells. <i>Synthetic Metals</i> , 2009 , 159, 2348-2354	3.6	29
154	Chemical identification of cannabinoids in street marijuana samples using electrospray ionization FT-ICR mass spectrometry. <i>Analytical Methods</i> , 2015 , 7, 1415-1424	3.2	28
153	Revealing the chemical characterization of asphaltenes fractions produced by N-methylpyrrolidone using FTIR, molecular fluorescence, 1H NMR, and ESI(-)FT-ICR MS. <i>Fuel</i> , 2017 , 210, 514-526	7.1	27
152	A new synthetic resorcinolic lipid 3-heptyl-3,4,6-trimethoxy-3H-isobenzofuran-1-one: evaluation of toxicology and ability to potentiate the mutagenic and apoptotic effects of cyclophosphamide. <i>European Journal of Medicinal Chemistry</i> , 2014 , 75, 132-42	6.8	27
151	Coupling trapped ion mobility spectrometry to mass spectrometry: trapped ion mobility spectrometry-time-of-flight mass spectrometry versus trapped ion mobility spectrometry-Fourier transform ion cyclotron resonance mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> ,	2.2	27
150	Gunshot residues (GSR) analysis of clean range ammunition using SEM/EDX, colorimetric test and ICP-MS: A comparative approach between the analytical techniques. <i>Microchemical Journal</i> , 2016 , 129, 339-347	4.8	26
149	Rapid screening of agrochemicals by paper spray ionization and leaf spray mass spectrometry: which technique is more appropriate?. <i>Analytical Methods</i> , 2016 , 8, 6023-6029	3.2	26
148	Portable near infrared spectroscopy applied to fuel quality control. <i>Talanta</i> , 2018 , 176, 26-33	6.2	26
147	Multivariate optimisation of ICP OES instrumental parameters for Pb/Ba/Sb measurement in gunshot residues. <i>Microchemical Journal</i> , 2015 , 120, 58-63	4.8	25
146	Fractionation of asphaltenes in n-hexane and on adsorption onto CaCO3 and characterization by ESI(+)FT-ICR MS: Part I. <i>Fuel</i> , 2017 , 210, 790-802	7.1	24
145	Characterization of Naphthenic Acids in Thermally Degraded Petroleum by ESI(IFT-ICR MS and 1H NMR after Solid-Phase Extraction and Liquid/Liquid Extraction. <i>Energy & Energy </i>	3 ^{4.1}	24
144	Ageing of polyamide 11 used in the manufacture of flexible piping. <i>Journal of Applied Polymer Science</i> , 2009 , 114, 1777-1783	2.9	24
143	A survey of adulterants used to cut cocaine in samples seized in the Esplito Santo State by GC-MS allied to chemometric tools. <i>Science and Justice - Journal of the Forensic Science Society</i> , 2016 , 56, 73-9	2	24
142	Laser desorption ionization FT-ICR mass spectrometry and CARSPLS for predicting basic nitrogen and aromatics contents in crude oils. <i>Fuel</i> , 2015 , 160, 274-281	7.1	23
141	Forensic ballistics by inductively coupled plasma-optical emission spectroscopy: Quantification of gunshot residues and prediction of the number of shots using different firearms. <i>Microchemical Journal</i> , 2015 , 118, 19-25	4.8	23
140	Portable near infrared spectroscopy applied to abuse drugs and medicine analyses. <i>Analytical Methods</i> , 2018 , 10, 593-603	3.2	23
139	A new procedure based on column chromatography to purify bromelain by ion exchange plus gel filtration chromatographies. <i>Industrial Crops and Products</i> , 2014 , 59, 163-168	5.9	23
138	Profiling counterfeit Cialis, Viagra and analogs by UPLC-MS. <i>Forensic Science International</i> , 2013 , 229, 13-20	2.6	23

Analysis of Cocaine and Crack Cocaine via Thin Layer Chromatography Coupled to Easy Ambient Sonic-Spray Ionization Mass Spectrometry. <i>American Journal of Analytical Chemistry</i> , 2011 , 02, 658-664	0.7	23
Evaluating the selectivity of colorimetric test (Fast Blue BB salt) for the cannabinoids identification in marijuana street samples by UVI/is, TLC, ESI(+)FT-ICR MS and ESI(+)MS/MS. <i>Forensic Chemistry</i> , 2016 , 1, 13-21	2.8	23
Petroleomics by Direct Analysis in Real Time-Mass Spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 2016 , 27, 182-5	3.5	22
Extraction and fractionation of basic nitrogen compounds in vacuum residue by solid-phase extraction and characterization by ultra-high resolution mass spectrometry. <i>International Journal of Mass Spectrometry</i> , 2017 , 418, 67-72	1.9	22
Paper spray ionization mass spectrometry allied to chemometric tools for quantification of whisky adulteration with additions of sugarcane spirit. <i>Analytical Methods</i> , 2018 , 10, 1952-1960	3.2	22
A simple and convenient method for synthesis of new aminonaphthoquinones derived from lawsone by catalytic multicomponent Mannich reaction. <i>Tetrahedron Letters</i> , 2014 , 55, 4373-4377	2	22
Analyzing Brazilian vehicle documents for authenticity by easy ambient sonic-spray ionization mass spectrometry. <i>Journal of Forensic Sciences</i> , 2012 , 57, 539-43	1.8	22
Quantification and classification of vegetable oils in extra virgin olive oil samples using a portable near-infrared spectrometer associated with chemometrics. <i>Microchemical Journal</i> , 2020 , 159, 105544	4.8	22
Analytical advanced techniques in the molecular-level characterization of Brazilian crude oils. <i>Microchemical Journal</i> , 2018 , 137, 111-118	4.8	21
Study of the effect of temperature and gas condensate addition on the viscosity of heavy oils. Journal of Petroleum Science and Engineering, 2016 , 142, 163-169	4.4	21
Antihypertensive effect of Carica papaya via a reduction in ACE activity and improved baroreflex. <i>Planta Medica</i> , 2014 , 80, 1580-7	3.1	21
Phytochemical and in vitro and in vivo biological investigation on the antihypertensive activity of mango leaves (Mangifera indica L.). <i>Therapeutic Advances in Cardiovascular Disease</i> , 2015 , 9, 244-56	3.4	20
Characterization of organosulfur compounds in asphalt cement samples by ESI(+)FT-ICR MS and 13C NMR spectroscopy. <i>Fuel</i> , 2019 , 256, 115923	7.1	19
Characterization of sildenafil citrate tablets of different sources by near infrared chemical imaging and chemometric tools. <i>Journal of Pharmaceutical and Biomedical Analysis</i> , 2013 , 85, 207-12	3.5	19
Application of Atmospheric Solids Analysis Probe Mass Spectrometry (ASAP-MS) in Petroleomics: Analysis of Condensed Aromatics Standards, Crude Oil, and Paraffinic Fraction. <i>Journal of the American Society for Mass Spectrometry</i> , 2017 , 28, 2401-2407	3.5	19
LSD and 9,10-dihydro-LSD analyses in street drug blotter samples via easy ambient sonic-spray ionization mass spectrometry (EASI-MS). <i>Journal of Forensic Sciences</i> , 2012 , 57, 1307-12	1.8	19
Characterization of nonvolatile polar compounds from Brazilian oils by electrospray ionization with FT-ICR MS and Orbitrap-MS. <i>Fuel</i> , 2020 , 282, 118790	7.1	19
Quantification of cocaine and its adulterants (lidocaine and levamisole) using the Dragendorff reagent allied to paper spray ionization mass spectrometry. <i>Analytical Methods</i> , 2017 , 9, 3662-3668	3.2	17
	Sonic-Spray Ionization Mass Spectrometry. American Journal of Analytical Chemistry, 2011, 02, 658-664 Evaluating the selectivity of colorimetric test (Fast Blue BB salt) for the cannabinoids identification in marijuana street samples by UVB'is, TLC, ESI(+)FT-ICR MS and ESI(+)MS/MS. Forensic Chemistry, 2016, 1, 13-21 Petroleomics by Direct Analysis in Real Time-Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2016, 27, 182-5 Extraction and fractionation of basic nitrogen compounds in vacuum residue by solid-phase extraction and characterization by ultra-high resolution mass spectrometry. International Journal of Mass Spectrometry, 2017, 418, 67-72 Paper spray ionization mass spectrometry allied to chemometric tools for quantification of whisky adulteration with additions of sugarcane spirit. Analytical Methods, 2018, 10, 1952-1960 A simple and convenient method for synthesis of new aminonaphthoquinones derived from lawsone by catalytic multicomponent Mannich reaction. Tetrahedron Letters, 2014, 55, 4373-4377 Analyzing Brazilian vehicle documents for authenticity by easy ambient sonic-spray ionization mass spectrometry. Journal of Forensic Sciences, 2012, 57, 539-43 Quantification and classification of vegetable oils in extra virgin olive oil samples using a portable near-infrared spectrometer associated with chemometrics. Microchemical Journal, 2020, 159, 105544 Analytical advanced techniques in the molecular-level characterization of Brazilian crude oils. Microchemical Journal, 2018, 137, 111-118 Study of the effect of temperature and gas condensate addition on the viscosity of heavy oils. Journal of Petroleum Science and Engineering, 2016, 142, 163-169 Antihypertensive effect of Carica papaya via a reduction in ACE activity and improved baroreflex. Planta Medica, 2014, 80, 1580-7 Phytochemical and in vitro and in vivo biological investigation on the antihypertensive activity of mango leaves (Mangifera indica L.). Therapeutic Advances in Cardiovascular Disease, 2015, 9, 244-5	Sonic-Spray Ionization Mass Spectrometry. American Journal of Analytical Chemistry, 2011, 02, 658-664 Evaluating the selectivity of colorimetric test (Fast Blue BB salt) for the cannabinoids identification in marijuana street samples by UVVis, TLC, ESI(+)FT-ICR MS and ESI(+)MS/MS. Forensic Chemistry, 2016, 1, 13-21 Petroleomics by Direct Analysis in Real Time-Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2016, 27, 182-5 Extraction and fractionation of basic nitrogen compounds in vacuum residue by solid-phase extraction and characterization by ultra-high resolution mass spectrometry. International Journal of Mass Spectrometry, 2017, 418, 67-72 Paper spray ionization mass spectrometry allied to chemometric tools for quantification of whisky adulteration with additions of sugarcane spirit. Analytical Methods, 2018, 10, 1952-1960 A simple and convenient method for synthesis of new aminonaphthoquinones derived from lawsone by catalytic multicomponent Mannich reaction. Tetrahedron Letters, 2014, 55, 4373-4377 Analyzing Brazilian vehicle documents for authenticity by easy ambient sonic-spray ionization mass spectrometry. Journal of Forensic Sciences, 2012, 57, 539-43 Quantification and classification of vegetable oils in extra virgin olive oil samples using a portable near-infrared spectrometer associated with chemometrics. Microchemical Journal, 2020, 159, 105544 Analytical advanced techniques in the molecular-level characterization of Brazilian crude oils. Microchemical Journal, 2018, 137, 111-118 Study of the effect of temperature and gas condensate addition on the viscosity of heavy oils. Journal of Petroleum Science and Engineering, 2016, 142, 163-169 Antihypertensive effect of Carica papaya via a reduction in ACE activity and improved baroreflex. Planta Medica, 2014, 80, 1580-7 Phytochemical and in vitro and in vivo biological investigation on the antihypertensive activity of mango leaves (Mangifera indica L.). Therapeutic Advances in Cardiovascular Disease, 2015, 9, 244-56

119	Chemical profiles of Robusta and Arabica coffee by ESI(IFT-ICR MS and ATR-FTIR: a quantitative approach. <i>Analytical Methods</i> , 2016 , 8, 7678-7688	3.2	17
118	Study of degradation of acid crude oil by high resolution analytical techniques. <i>Journal of Petroleum Science and Engineering</i> , 2017 , 154, 194-203	4.4	16
117	Isomeric separation of cannabinoids by UPLC combined with ionic mobility mass spectrometry (TWIM-MS)Part I. <i>International Journal of Mass Spectrometry</i> , 2017 , 418, 112-121	1.9	16
116	Synthesis, characterization and introduction of a new ion-coordinating ruthenium sensitizer dye in quasi-solid state TiO2 solar cells. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2011 , 222, 185-191	4.7	16
115	FTIR, 1H and 13C NMR data fusion to predict crude oils properties. Fuel, 2020, 263, 116721	7.1	16
114	Quantification of milk adulterants (starch, H2O2, and NaClO) using colorimetric assays coupled to smartphone image analysis. <i>Microchemical Journal</i> , 2020 , 156, 104968	4.8	15
113	Eugenia calycina Cambess extracts and their fractions: Their antimicrobial activity and the identification of major polar compounds using electrospray ionization FT-ICR mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2014 , 99, 89-96	3.5	15
112	Analysis of gunshot residues produced by .38 caliber handguns using inductively coupled plasma-optical emission spectroscopy (ICP OES). <i>Microchemical Journal</i> , 2014 , 115, 106-112	4.8	15
111	Brown seaweed Padina gymnospora is a prominent natural wound-care product. <i>Revista Brasileira De Farmacognosia</i> , 2016 , 26, 714-719	2	15
110	Extraction and isolation of cannabinoids from marijuana seizures and characterization by H NMR allied to chemometric tools. <i>Science and Justice - Journal of the Forensic Science Society</i> , 2018 , 58, 355-3	36 3	15
109	Banknote analysis by portable near infrared spectroscopy. Forensic Chemistry, 2018, 8, 57-63	2.8	14
108	The role of intermolecular interactions in polyaniline/polyamide-6,6 pressure-sensitive blends studied by DFT and 1H NMR. <i>European Polymer Journal</i> , 2016 , 85, 588-604	5.2	14
107	Determination of physicochemical properties of biodiesel and blends using low-field NMR and multivariate calibration. <i>Fuel</i> , 2019 , 237, 745-752	7.1	14
106	Evaluation of acute toxicity of europiumBrganic complex applied as a luminescent marker for the visual identification of gunshot residue. <i>Microchemical Journal</i> , 2016 , 124, 195-200	4.8	13
105	Evaluation of Adsorbent Materials for the Removal of Nitrogen Compounds in Vacuum Gas Oil by Positive and Negative Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Energy & District Materials</i> , 2017, 31, 3454-3464	4.1	13
104	Determination of crude oil physicochemical properties by high-temperature gas chromatography associated with multivariate calibration. <i>Fuel</i> , 2018 , 220, 389-395	7.1	13
103	Chemical profile of pineapple cv. Vittia in different maturation stages using electrospray ionization mass spectrometry. <i>Journal of the Science of Food and Agriculture</i> , 2018 , 98, 1105-1116	4.3	13
102	Quality control of ethanol fuel: Assessment of adulteration with methanol using 1H NMR. <i>Fuel</i> , 2014 , 135, 387-392	7.1	13

(2016-2010)

Fingerprinting of bottle-grade poly(ethylene terephthalate) via matrix-assisted laser desorption/ionization mass spectrometry. <i>Polymer Degradation and Stability</i> , 2010 , 95, 666-671	4.7	13
Chemical profiling and classification of cannabis through electrospray ionization coupled to Fourier transform ion cyclotron resonance mass spectrometry and chemometrics. <i>Analytical Methods</i> , 2017 , 9, 4070-4081	3.2	13
Direct quantitative analysis of cocaine by thin layer chromatography plus a mobile phone and multivariate calibration: a cost-effective and rapid method. <i>Analytical Methods</i> , 2016 , 8, 7632-7637	3.2	13
Asphaltenes subfractions extracted from Brazilian vacuum residue: Chemical characterization and stabilization of model water-in-oil (W/O) emulsions. <i>Journal of Petroleum Science and Engineering</i> , 2018 , 160, 1-11	4.4	12
Anti-Mayaro virus activity of Cassia australis extracts (Fabaceae, Leguminosae). <i>Parasites and Vectors</i> , 2014 , 7, 537	4	12
EuropiumBrganic complex as luminescent marker for the visual identification of gunshot residue and characterization by electrospray ionization FT-ICR mass spectrometry. <i>Microchemical Journal</i> , 2014 , 116, 216-224	4.8	12
Distinguishing between virgin and post-consumption bottle-grade poly (ethylene terephthalate) using thermal properties. <i>Polymer Testing</i> , 2010 , 29, 879-885	4.5	12
Chemical Fingerprinting of Counterfeits of Viagra and Cialis Tablets and Analogues via Electrospray Ionization Mass Spectrometry. <i>American Journal of Analytical Chemistry</i> , 2011 , 02, 919-928	0.7	12
Quantification of beef, pork, and chicken in ground meat using a portable NIR spectrometer. <i>Vibrational Spectroscopy</i> , 2020 , 111, 103158	2.1	12
Chemical characterization of synthetic cannabinoids by electrospray ionization FT-ICR mass spectrometry. <i>Forensic Science International</i> , 2016 , 266, 474-487	2.6	12
Cytotoxic analysis and chemical characterization of fractions of the hydroalcoholic extract of the Euterpe oleracea Mart. seed in the MCF-7 cell line. <i>Journal of Pharmacy and Pharmacology</i> , 2017 , 69, 714	4 4 721	11
A novel cytosporone 3-Heptyl-4,6-dihydroxy-3H-isobenzofuran-1-one: synthesis; toxicological, apoptotic and immunomodulatory properties; and potentiation of mutagenic damage. <i>BMC Cancer</i> , 2015 , 15, 561	4.8	11
Synthesis, Antitumor Activity and Docking of 2,3-(Substituted)-1,4-Naphthoquinone Derivatives Containing Nitrogen, Oxygen and Sulfur. <i>Journal of the Brazilian Chemical Society</i> , 2015 ,	1.5	11
Monitoring the polyamide 11 degradation by thermal properties and X-ray fluorescence spectrometry allied to chemometric methods. <i>X-Ray Spectrometry</i> , 2013 , 42, 79-86	0.9	11
Gastroprotective activity of the resin from Virola oleifera. <i>Pharmaceutical Biology</i> , 2017 , 55, 472-480	3.8	10
Determination of physicochemical properties of petroleum using 1H NMR spectroscopy combined with multivariate calibration. <i>Fuel</i> , 2019 , 253, 320-326	7.1	10
Quantification of cocaine and its adulterants by nuclear magnetic resonance spectroscopy without deuterated solvents (No-D qNMR). <i>Analytical Methods</i> , 2018 , 10, 1685-1694	3.2	10
Documentoscopy by atomic force microscopy (AFM) coupled with Raman microspectroscopy: applications in banknote and driver license analyses. <i>Analytical Methods</i> , 2016 , 8, 771-784	3.2	10
	desorption/lonization mass spectrometry. <i>Polymer Degradation and Stability</i> , 2010 , 95, 666-671 Chemical profiling and classification of cannabis through electrospray ionization coupled to Fourier transform ion cyclotron resonance mass spectrometry and chemometrics. <i>Analytical Methods</i> , 2017 , 9, 4070-4081 Direct quantitative analysis of cocaine by thin layer chromatography plus a mobile phone and multivariate calibration: a cost-effective and rapid method. <i>Analytical Methods</i> , 2016 , 8, 7632-7637 Asphaltenes subfractions extracted from Brazilian vacuum residue: Chemical characterization and stabilization of model water-in-oil (W/O) emulsions. <i>Journal of Petroleum Science and Engineering</i> , 2018 , 160, 1-11 Anti-Mayaro virus activity of Cassia australis extracts (Fabaceae, Leguminosae). <i>Parasites and Vectors</i> , 2014 , 7, 537 EuropiumBrganic complex as luminescent marker for the visual identification of gunshot residue and characterization by electrospray ionization FT-ICR mass spectrometry. <i>Microchemical Journal</i> , 2014 , 116, 216-224 Distinguishing between virgin and post-consumption bottle-grade poly (ethylene terephthalate) using thermal properties. <i>Polymer Testing</i> , 2010 , 29, 879-885 Chemical Fingerprinting of Counterfeits of Viagra and Cialis Tablets and Analogues via Electrospray ionization Mass Spectrometry. <i>American Journal of Analytical Chemistry</i> , 2011 , 02, 919-928 Quantification of beef, pork, and chicken in ground meat using a portable NIR spectrometer. <i>Vibrational Spectroscopy</i> , 2020 , 111, 103158 Chemical characterization of synthetic cannabinoids by electrospray ionization FT-ICR mass spectrometry. <i>Forensic Science International</i> , 2016 , 266, 474-487 Cytotoxic analysis and chemical characterization of fractions of the hydroalcoholic extract of the Euterpe oleracea Mart. seed in the MCF-7 cell line. <i>Journal of Pharmacy and Pharmacology</i> , 2017 , 69, 714 A novel cytosporone 3-Heptyl-4-6-dihydroxy-3H-isoberzofuran-1-one: synthesis; toxicological, apoptotic and immunomo	desorption/ionization mass spectrometry. <i>Polymer Degradation and Stability</i> , 2010, 95, 666-671 47 Chemical profiling and classification of cannabis through electrospray ionization coupled to Fourier transform ton cyclotron resonance mass spectrometry and chemometrics. <i>Analytical Methods</i> , 2017, 9, 4070-4081 Direct quantitative analysis of cocaine by thin layer chromatography plus a mobile phone and multivariate calibration: a cost-effective and rapid method. <i>Analytical Methods</i> , 2016, 8, 7632-7637 3-2 Asphaltenes subfractions extracted from Brazilian vacuum residue: chemical characterization and stabilization of model water-in-oil (W/O) emulsions. <i>Journal of Petroleum Science and Engineering</i> , 2018, 160, 1-11 Anti-Mayaro virus activity of Cassia australis extracts (Fabaceae, Leguminosae). <i>Parasites and Vectors</i> , 2014, 7, 537 EuropiumBrganic complex as luminescent marker for the visual identification of gunshot residue and characterization by electrospray ionization FT-ICR mass spectrometry. <i>Microchemical Journal</i> , 2014, 116, 216-224 Distinguishing between virgin and post-consumption bottle-grade poly (ethylene terephthalate) using thermal properties. <i>Polymer Testing</i> , 2010, 29, 879-885 Chemical Fingerprinting of Counterfeits of Viagra and Clalis Tablets and Analogues via Electrospray Ionization Mass Spectrometry. <i>American Journal of Analytical Chemistry</i> , 2011, 02, 919-928 Quantification of beef, pork, and chicken in ground meat using a portable NIR spectrometer. Vibrational Spectroscopy, 2020, 111, 103158 Chemical characterization of synthetic cannabinoids by electrospray ionization FT-ICR mass spectrometry. <i>Forensic Science International</i> , 2016, 266, 474-487 Cytotoxic analysis and chemical characterization of fractions of the hydroalcoholic extract of the Euterpe oleracea Mart. seed in the MCF-7 cell line. <i>Journal of Pharmacy and Pharmacology</i> , 2017, 69, 714 ⁴⁷ / ₂ 1 A novel cytosporone 3-Heptyl-4,6-dihydroxy-3H-isobenzofuran-1-one: synthesis; toxicological, apoptotic and immunomodulat

83	NBOMe compounds: An overview about analytical methodologies aiming their determination in biological matrices. <i>TrAC - Trends in Analytical Chemistry</i> , 2019 , 114, 260-277	14.6	9
82	Monitorando a degrada B da poliamida 11 (PA-11) via espectroscopia na regi B do infravermelho mdio com transformada de fourier (FTIR). <i>Polimeros</i> , 2013 , 23, 37-41	1.6	9
81	Hexane partition from Annona crassiflora Mart. promotes cytotoxity and apoptosis on human cervical cancer cell lines. <i>Investigational New Drugs</i> , 2019 , 37, 602-615	4.3	9
80	Phytochemical profile of genotypes of Euterpe edulis Martius - Juara palm fruits. <i>Food Research International</i> , 2019 , 116, 985-993	7	9
79	First synthesis of aminonaphthoquinones derived from lawsone in a colloidal dispersion system created by a Bristed acid-surfactant-combined catalyst in water: An environmentally friendly protocol. <i>Colloids and Interface Science Communications</i> , 2015 , 4, 14-18	5.4	8
78	Study of the Influence of Resins on the Asphaltene Aggregates by 1H DOSY NMR. <i>Energy & Energy & Energ</i>	4.1	8
77	Dendranthema grandiflorum, a hybrid ornamental plant, is a source of larvicidal compounds against Aedes aegypti larvae. <i>Revista Brasileira De Farmacognosia</i> , 2016 , 26, 342-346	2	8
76	Rheological study of the behavior of water-in-oil emulsions of heavy oils. <i>Journal of Petroleum Science and Engineering</i> , 2019 , 173, 1323-1331	4.4	8
75	Discrimination of oils and fuels using a portable NIR spectrometer. <i>Fuel</i> , 2021 , 283, 118854	7.1	8
74	Fungicides in red wines produced in South America. <i>Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment</i> , 2018 , 35, 2135-2144	3.2	8
73	Identification of maloyl glucans from Euphorbia tirucalli by ESI-(IFT-ICR MS analyses. <i>Phytochemistry Letters</i> , 2015 , 12, 209-214	1.9	7
7 ²	No-deuterium proton NMR (No-D NMR): A simple, fast and powerful method for analyses of illegal drugs. <i>Microchemical Journal</i> , 2015 , 118, 12-18	4.8	7
71	Prediction of Total Acid Number in Distillation Cuts of Crude Oil by ESI(I) FT-ICR MS Coupled with Chemometric Tools. <i>Journal of the Brazilian Chemical Society</i> , 2017 ,	1.5	7
70	Identification of phenolic compounds in Eugenia uniflora leaves by FTICR MS in association with different ionization sources. <i>Analytical Methods</i> , 2018 , 10, 1647-1655	3.2	7
69	Identification of petroleum profiles by infrared spectroscopy and chemometrics. <i>Fuel</i> , 2019 , 254, 11567	707.1	7
68	A Clinical Trial with Brazilian Arnica (Solidago chilensis Meyen) Glycolic Extract in the Treatment of Tendonitis of Flexor and Extensor Tendons of Wrist and Hand. <i>Phytotherapy Research</i> , 2015 , 29, 864-9	6.7	7
67	Development of a portable electroanalytical method using nickel modified screen-printed carbon electrode for ethinylestradiol determination in organic fertilizers. <i>Ecotoxicology and Environmental Safety</i> , 2021 , 208, 111430	7	7
66	A review of chemometrics models to predict crude oil properties from nuclear magnetic resonance and infrared spectroscopy. <i>Fuel</i> , 2021 , 303, 121283	7.1	7

(2020-2019)

65	The use of conductive polymers as a substrate for paper spray ionization mass spectrometry. <i>Analytical Methods</i> , 2019 , 11, 3388-3400	3.2	6	
64	Quantification of capsaicinoids from chili peppers using 1H NMR without deuterated solvent. <i>Analytical Methods</i> , 2019 , 11, 1939-1950	3.2	6	
63	LDI and MALDI-FT-ICR imaging MS in Cannabis leaves: optimization and study of spatial distribution of cannabinoids. <i>Analytical Methods</i> , 2019 , 11, 1757-1764	3.2	6	
62	Improving the physicochemical properties of Brazilian onshore and offshore crude oils using the production of blends. <i>Fuel</i> , 2015 , 159, 607-613	7.1	6	
61	DropMS: Petroleomics Data Treatment Based in Web Server for High-Resolution Mass Spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 2020 , 31, 1483-1490	3.5	6	
60	Estimating the intermediate precision in petroleum analysis by (-)electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2020 , 34 Suppl 3, e8861	2.2	6	
59	Development, validation and evaluation of a quantitative method for the analysis of twenty-four new psychoactive substances in oral fluid by LCMS/MS. <i>Forensic Chemistry</i> , 2020 , 19, 100231	2.8	6	
58	Evaluating the effect of ion source gas (N2, He, and synthetic air) on the ionization of hydrocarbon, condensed aromatic standards, and paraffin fractions by APCI(+)FT-ICR MS. <i>Fuel</i> , 2018 , 225, 632-645	7.1	6	
57	Variable selection in support vector regression using angular search algorithm and variance inflation factor. <i>Journal of Chemometrics</i> , 2020 , 34, e3282	1.6	6	
56	Analysis of Isomeric Cannabinoid Standards and Cannabis Products by UPLC-ESI-TWIM-MS: a Comparison with GC-MS and GC IGC-QMS. <i>Journal of the Brazilian Chemical Society</i> , 2018 ,	1.5	6	
55	Fraction Induces Tumor Cell Death by Activation of Caspase-3, RIP, and TNF-R1 and Inhibits Cell Migration and Invasion. <i>BioMed Research International</i> , 2018 , 2018, 4702481	3	6	
54	Portable electronic tongue based on screen-printed electrodes coupled with chemometrics for rapid differentiation of Brazilian lager beer. <i>Food Control</i> , 2021 , 127, 108163	6.2	6	
53	Biocontrol potential of Waitea circinata, an orchid mycorrhizal fungus, against the rice blast fungus. <i>Tropical Plant Pathology</i> , 2015 , 40, 151-159	2.5	5	
52	Plectranthus barbatus Andrews as anti-Helicobacter pylori agent with activity against adenocarcinoma gastric cells. <i>Industrial Crops and Products</i> , 2020 , 146, 112207	5.9	5	
51	Fiber spray ionization mass spectrometry in forensic chemistry: A screening of drugs of abuse and direct determination of cocaine in urine. <i>Rapid Communications in Mass Spectrometry</i> , 2020 , 34 Suppl 3, e8747	2.2	5	
50	Quantifica ß de antimßio em garrafas de politereftalato de etileno (PET) brasileiras por fluorescßcia de raios-X e avaliaß quimiomtrica para verificar a presenß de pet reciclado atravs do teor de ferro. <i>Quimica Nova</i> , 2011 , 34, 1389-1393	1.6	5	
49	Identification of Alkaloids from Hippeastrum aulicum (Ker Gawl.) Herb. (Amaryllidaceae) Using CGC-MS and Ambient Ionization Mass Spectrometry (PS-MS and LS-MS). <i>Journal of the Brazilian Chemical Society</i> , 2016 ,	1.5	5	
48	Corrosion rate studies of AISI 1020 steel using linear, cyclic, and aromatic naphthenic acid standards. <i>Journal of Petroleum Science and Engineering</i> , 2020 , 184, 106474	4.4	5	

47	Study of chemical profile and of lines crossing using blue and black ink pens by LDI (+) MS and LDI (+) imaging. <i>Microchemical Journal</i> , 2019 , 148, 220-229	4.8	4
46	ANTIMICROBIAL ACTIVITY OF COPAIFERA SPP. AGAINST BACTERIA ISOLATED FROM MILK OF COWS WITH MASTITIS. <i>Ciencia Animal Brasileira</i> , 2017 , 18,	0.8	4
45	Mart. Fractions Promote Cell Cycle Arrest and Inhibit Autophagic Flux in Human Cervical Cancer Cell Lines. <i>Molecules</i> , 2019 , 24,	4.8	4
44	Viagra[] and Cialis[] blister packaging fingerprinting using Fourier transform infrared spectroscopy (FTIR) allied with chemometric methods. <i>Analytical Methods</i> , 2014 , 6, 2722	3.2	4
43	Phenolic and glycidic profiling of bananas Musa sp associated with maturation stage and cancer chemoprevention activities. <i>Microchemical Journal</i> , 2020 , 153, 104391	4.8	4
42	Matteucinol, isolated from Miconia chamissois, induces apoptosis in human glioblastoma lines via the intrinsic pathway and inhibits angiogenesis and tumor growth in vivo. <i>Investigational New Drugs</i> , 2020 , 38, 1044-1055	4.3	4
41	Chemical Characterization and Interfacial Activity of Molecules Isolated from Brazilian Oils by Adsorption onto Wet Silica Particles. <i>Energy & Energy & Ene</i>	4.1	3
40	SAP fractions from light, medium and heavy oils: Correlation between chemical profile and stationary phases. <i>Fuel</i> , 2020 , 274, 117866	7.1	3
39	Exploring the chemical profile of designer drugs by ESI(+) and PSI(+) mass spectrometry-An approach on the fragmentation mechanisms and chemometric analysis. <i>Journal of Mass Spectrometry</i> , 2020 , 55, e4596	2.2	3
38	Synthesis, Antibacterial and Antitubercular Evaluation of Cardanol and Glycerol-Based FAmino Alcohol Derivatives. <i>Journal of the Brazilian Chemical Society</i> , 2017 ,	1.5	3
37	Antiproliferative activity of extracts of Euphorbia tirucalli L (Euphorbiaceae) from three regions of Brazil. <i>Tropical Journal of Pharmaceutical Research</i> , 2017 , 16, 1013	0.8	3
36	Induction of NAD (P)H: Quinone reductase 1 (QR1) and antioxidant activities in vitro of G oranja Burarama Q (Citrus maxima [Burm.] Merr.). <i>Phytotherapy Research</i> , 2018 , 32, 2059-2068	6.7	3
35	Analysing metals in bottle-grade poly(ethylene terephthalate) by X-ray fluorescence spectrometry. <i>Journal of Applied Polymer Science</i> , 2010 , 117, n/a-n/a	2.9	3
34	Kraft lignin and polyethylene terephthalate blends: effect on thermal and mechanical properties. <i>Polimeros</i> , 2019 , 29,	1.6	3
33	Asphaltenes subfractions characterization and calculation of their solubility parameter using ESI(-) FT-ICR MS: Part II. <i>Fuel</i> , 2022 , 312, 122864	7.1	3
32	Study of the Effect of Inhibitors Solutions on the Chemical Composition of Waxes by Rheology Tests and High Resolution Mass Spectrometry. <i>Journal of the Brazilian Chemical Society</i> ,	1.5	3
31	Use of portable Raman spectroscopy in the quality control of extra virgin olive oil and adulterated compound oils. <i>Vibrational Spectroscopy</i> , 2021 , 116, 103299	2.1	3
30	Paper spray ionization coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry as a tool to fight the counterfeiting of medicines. <i>International Journal of Mass Spectrometry</i> , 2021 , 468, 116649	1.9	3

29	Characterization of naphthenic acids in crude oil samples 🖪 literature review. Fuel, 2022, 319, 123775	7.1	3
28	Controlling the quality of grape juice adulterated by apple juice using ESI(-)FT-ICR mass spectrometry. <i>Microchemical Journal</i> , 2019 , 149, 104033	4.8	2
27	Designer drugs analysis by LDI(+), MALDI(+) and MALDI(+) imaging coupled to FT-ICR MS. <i>Microchemical Journal</i> , 2019 , 149, 104002	4.8	2
26	Isolation and Structural Characterization of Two New Furanoditerpenes from Pterodon emarginatus (Fabaceae). <i>Journal of the Brazilian Chemical Society</i> , 2017 ,	1.5	2
25	Mass Spectrometry for Metabolomics and Biomass Composition Analyses 2016 , 115-141		2
24	TiO2@C Nanostructured Electrodes for the Anodic Removal of Cocaine. <i>Electroanalysis</i> , 2018 , 30, 2094	-2 ₉ 098	2
23	Unequivocal structural assignments of three cardanol derivatives: An experimental and theoretical approach. <i>Journal of Molecular Structure</i> , 2019 , 1175, 357-366	3.4	2
22	Biosynthesis and antioxidant activity of 4NRC Eglycoside. <i>Tetrahedron Letters</i> , 2013 , 54, 6656-6659	2	2
21	Improvement on Pour Point of Heavy Oils by Adding Organic Solvents. <i>Revista Virtual De Quimica</i> , 2017 , 9, 2404-2413	1.3	2
20	Coriandrum sativum grown under organic or chemical fertilizer effectively prevents DNA damage: Preliminary phytochemical screening, flavonoid content, ESI (-) FTICR MS, in vitro antioxidant and in vivo (mice bone marrow) antimutagenic activity against cyclophosphamide. <i>Asian Pacific Journal of</i>	1.4	2
19	Isolation of tetrameric acids from naphthenates deposits and characterization by high-resolution analytical techniques. <i>Fuel</i> , 2022 , 308, 122065	7.1	2
18	Analysis of Robusta coffee cultivated in agroforestry systems (AFS) by ESI-FT-ICR MS and portable NIR associated with sensory analysis. <i>Journal of Food Composition and Analysis</i> , 2020 , 94, 103637	4.1	2
17	Differentiation of Toxic and Non-Toxic Leaves of Jatropha curcas L. Genotypes by Leaf Spray Mass Spectrometry. <i>Journal of the Brazilian Chemical Society</i> , 2016 ,	1.5	2
16	Analysis of Leaves by Imaging Mass Spectrometry (MALDI-FT-ICR IMS). <i>Journal of the American Society for Mass Spectrometry</i> , 2021 , 32, 946-955	3.5	2
15	Molecularly imprinted polymers as a selective sorbent for forensic applications in biological samples-a review. <i>Analytical and Bioanalytical Chemistry</i> , 2021 , 413, 6013-6036	4.4	2
14	Fourier transform mass spectrometry applied to Forensic Chemistry 2019 , 469-508		1
13	Detection of Pb, Ba, and Sb in Blowfly Larvae of Porcine Tissue Contaminated with Gunshot Residue by ICP OES. <i>Journal of Chemistry</i> , 2015 , 2015, 1-6	2.3	1
12	Experimental and ab initio investigation of the products of reaction from B -tetrahydrocannabinol (B -THC) and the fast blue BB spot reagent in presumptive drug tests for cannabinoids. <i>Forensic Chemistry</i> , 2020 , 17, 100212	2.8	1

11	Flavonoid Derivatives Targeting BCR-ABL Kinase: Semisynthesis, Molecular Dynamic Simulations and Enzymatic Inhibition. <i>Current Topics in Medicinal Chemistry</i> , 2021 , 21, 1999-2017	3	1
10	Study of Thermal Aging of Model Compounds Present in Asphalt Cement by GC/MS, ESI-MS, NMR, and FTIR. <i>Energy & Compounds</i> , 2021, 35, 14553-14568	4.1	1
9	Design experiments to detect and quantify soybean oil in extra virgin olive oil using portable Raman spectroscopy. <i>Vibrational Spectroscopy</i> , 2021 , 116, 103294	2.1	1
8	Portable Raman spectroscopy applied to the study of drugs of abuse <i>Journal of Forensic Sciences</i> , 2022 ,	1.8	1
7	Comparing the Intermediate Precision in Petroleomics by Ultrahigh-Resolution Mass Spectrometry. <i>Energy & Energy & Energ</i>	4.1	О
6	Detection of Pb, Ba, and Sb in Cadaveric Maggots and Pupae by ICP-MS. <i>Journal of Forensic Sciences</i> , 2020 , 65, 2188-2193	1.8	O
5	Characterization of Asphalt Aging by Analytical Techniques: A Review on Progress and Perspectives. <i>Energy & Energy & En</i>	4.1	О
4	Preparation of a Nitrogen Oil Compound Fraction by Modified Gel Silica Column Chromatography. <i>Energy & Samp; Fuels</i> , 2020 , 34, 5652-5664	4.1	
3	CHAPTER 9:Paper Spray Ionization Mass Spectrometry in Forensic Chemistry. <i>RSC Detection Science</i> , 2019 , 198-243	0.4	
2	Comparison of Conventional and Microwave Synthesis of Phenyl-1H-pyrazoles and Phenyl-1H-pyrazoles-4-carboxylic Acid Derivatives. <i>Current Organic Synthesis</i> , 2021 , 18, 844-853	1.9	

Ambient Ionization Mass Spectrometry in Food Metabolomics **2021**, 54-76