Chuanxin He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3474853/publications.pdf Version: 2024-02-01

CHIIANYIN HE

#	Article	IF	CITATIONS
1	Pyrimidine donor induced built-in electric field between melon chains in crystalline carbon nitride to facilitate excitons dissociation. Chinese Chemical Letters, 2023, 34, 107383.	4.8	6
2	Fluorine-induced dual defects in NiP2 anode with robust sodium storage performance. Nano Research, 2022, 15, 2147-2156.	5.8	16
3	A New Insight into Ultrastable Zn Metal Batteries Enabled by In Situ Built Multifunctional Metallic Interphase. Advanced Functional Materials, 2022, 32, 2109749.	7.8	113
4	A Multiscale Strategy to Construct Cobalt Nanoparticles Confined within Hierarchical Carbon Nanofibers for Efficient CO ₂ Electroreduction. Small, 2022, 18, e2104958.	5.2	4
5	Efficient capture and conversion of polysulfides by zinc protoporphyrin framework-embedded triple-layer nanofiber separator for advanced Li-S batteries. Journal of Colloid and Interface Science, 2022, 609, 43-53.	5.0	9
6	Construction of single-atom copper sites with low coordination number for efficient CO ₂ electroreduction to CH ₄ . Journal of Materials Chemistry A, 2022, 10, 6187-6192.	5.2	24
7	Restricted diffusion preparation of fully-exposed Fe single-atom catalyst on carbon nanospheres for efficient oxygen reduction reaction. Applied Catalysis B: Environmental, 2022, 305, 121058.	10.8	42
8	Optical Properties of Few-Layer Ti ₃ CN MXene: From Experimental Observations to Theoretical Calculations. ACS Nano, 2022, 16, 3059-3069.	7.3	46
9	Band Engineering Induced Conducting 2Hâ€Phase MoS ₂ by PdSRe Sites Modification for Hydrogen Evolution Reaction. Advanced Energy Materials, 2022, 12, .	10.2	37
10	Novel Concept of Separator Design: Efficient Ions Transport Modulator Enabled by Dualâ€Interface Engineering Toward Ultraâ€Stable Zn Metal Anodes. Advanced Functional Materials, 2022, 32, .	7.8	79
11	In-Plane Charge Transport Dominates the Overall Charge Separation and Photocatalytic Activity in Crystalline Carbon Nitride. ACS Catalysis, 2022, 12, 4648-4658.	5.5	69
12	Bio-inspired synthesis of transition-metal oxide hybrid ultrathin nanosheets for enhancing the cycling stability in lithium-ion batteries. Nano Research, 2022, 15, 5064-5071.	5.8	8
13	Bimetallic two-dimensional materials for electrocatalytic oxygen evolution. Chinese Chemical Letters, 2022, 33, 3657-3671.	4.8	24
14	Bimetallic Cobalt–Copper Nanoparticle-Decorated Hollow Carbon Nanofibers for Efficient CO2 Electroreduction. Frontiers in Chemistry, 2022, 10, 904241.	1.8	3
15	Earthâ€Abundant Metalâ€Based Electrocatalysts Promoted Anodic Reaction in Hybrid Water Electrolysis for Efficient Hydrogen Production: Recent Progress and Perspectives. Advanced Energy Materials, 2022, 12, .	10.2	87
16	Confining ultrafine Ru clusters into TiO2 lattice frameworks to yield efficient and ultrastable electrocatalysts towards practical hydrogen evolution. Chemical Engineering Journal, 2022, 446, 137248.	6.6	14
17	Breaking the Limitation of Elevated Coulomb Interaction in Crystalline Carbon Nitride for Visible and Nearâ€Infrared Light Photoactivity. Advanced Science, 2022, 9, .	5.6	22
18	Cyanamide-defect-induced built-in electric field in crystalline carbon nitride for enhanced visible to near-infrared light photocatalytic activity. Inorganic Chemistry Frontiers, 2022, 9, 4320-4328.	3.0	14

#	Article	IF	CITATIONS
19	Subnanometric Ru clusters with upshifted D band center improve performance for alkaline hydrogen evolution reaction. Nature Communications, 2022, 13, .	5.8	262
20	Recent advances in spinel-type electrocatalysts for bifunctional oxygen reduction and oxygen evolution reactions. Journal of Energy Chemistry, 2021, 53, 290-302.	7.1	154
21	Construction of cobalt-copper bimetallic oxide heterogeneous nanotubes for high-efficient and low-overpotential electrochemical CO2 reduction. Journal of Energy Chemistry, 2021, 54, 1-6.	7.1	26
22	Oxygen Vacancy Engineering in Titanium Dioxide for Sodium Storage. Chemistry - an Asian Journal, 2021, 16, 3-19.	1.7	27
23	Understanding CO2 electrochemical reduction kinetics of mixed-conducting cathodes by the electrical conductivity relaxation method. International Journal of Hydrogen Energy, 2021, 46, 9646-9652.	3.8	12
24	Ultrathin MoS2 anchored on 3D carbon skeleton containing SnS quantum dots as a high-performance anode for advanced lithium ion batteries. Chemical Engineering Journal, 2021, 403, 126251.	6.6	105
25	Amorphous MoS3 decoration on 2D functionalized MXene as a bifunctional electrode for stable and robust lithium storage. Chemical Engineering Journal, 2021, 406, 126775.	6.6	59
26	Oxygen-doped crystalline carbon nitride with greatly extended visible-light-responsive range for photocatalytic H2 generation. Applied Catalysis B: Environmental, 2021, 283, 119636.	10.8	111
27	Engineering defect-rich Fe-doped NiO coupled Ni cluster nanotube arrays with excellent oxygen evolution activity. Applied Catalysis B: Environmental, 2021, 285, 119809.	10.8	103
28	Construction of cobalt oxyhydroxide nanosheets with rich oxygen vacancies as high-performance lithium-ion battery anodes. Journal of Materials Chemistry A, 2021, 9, 453-462.	5.2	47
29	Co–Mo–P carbon nanospheres derived from metal–organic frameworks as a high-performance electrocatalyst towards efficient water splitting. Journal of Materials Chemistry A, 2021, 9, 1143-1149.	5.2	36
30	Carbon nanotubes coupled with layered graphite to support SnTe nanodots as high-rate and ultra-stable lithium-ion battery anodes. Nanoscale, 2021, 13, 3782-3789.	2.8	23
31	Reaction intermediate-mediated electrocatalyst synthesis favors specified facet and defect exposure for efficient nitrate–ammonia conversion. Energy and Environmental Science, 2021, 14, 4989-4997.	15.6	145
32	Broadband Nonlinear Photonics in Few‣ayer Borophene. Small, 2021, 17, e2006891.	5.2	42
33	Ultraâ€5mall 2D PbS Nanoplatelets: Liquidâ€Phase Exfoliation and Emerging Applications for Photoâ€Electrochemical Photodetectors. Small, 2021, 17, e2005913.	5.2	50
34	Recent Progress in 2D Catalysts for Photocatalytic and Electrocatalytic Artificial Nitrogen Reduction to Ammonia. Advanced Energy Materials, 2021, 11, 2003294.	10.2	73
35	Structural and electronic engineering of biomass-derived carbon nanosheet composite for electrochemical oxygen reduction. Sustainable Energy and Fuels, 2021, 5, 2114-2126.	2.5	8
36	An aqueous polyethylene oxide-based solid-state electrolyte with high voltage stability for dendrite-free lithium deposition <i>via</i> a self-healing electrostatic shield. Dalton Transactions, 2021, 50, 14296-14302.	1.6	7

#	Article	IF	CITATIONS
37	Berlin Green Framework-Based Gas Sensor for Room-Temperature and High-Selectivity Detection of Ammonia. Nano-Micro Letters, 2021, 13, 63.	14.4	21
38	Regulation of the adsorption sites of Ni ₂ P by Ru and S co-doping for ultra-efficient alkaline hydrogen evolution. Journal of Materials Chemistry A, 2021, 9, 15648-15653.	5.2	30
39	Heteroâ€MXenes: Theory, Synthesis, and Emerging Applications. Advanced Materials, 2021, 33, e2004129.	11.1	150
40	PbSe Nanocrystals Produced by Facile Liquid Phase Exfoliation for Efficient UV–Vis Photodetectors. Advanced Functional Materials, 2021, 31, 2010401.	7.8	35
41	2D Electrocatalysts: Recent Progress in 2D Catalysts for Photocatalytic and Electrocatalytic Artificial Nitrogen Reduction to Ammonia (Adv. Energy Mater. 11/2021). Advanced Energy Materials, 2021, 11, 2170043.	10.2	3
42	Scallion-Inspired Graphene Scaffold Enabled High Rate Lithium Metal Battery. Nano Letters, 2021, 21, 2347-2355.	4.5	20
43	Electrochemical Construction of Low-Crystalline CoOOH Nanosheets with Short-Range Ordered Grains to Improve Oxygen Evolution Activity. ACS Catalysis, 2021, 11, 6104-6112.	5.5	103
44	A Selfâ€Limited Freeâ€Standing Sulfide Electrolyte Thin Film for Allâ€Solidâ€State Lithium Metal Batteries. Advanced Functional Materials, 2021, 31, 2101985.	7.8	77
45	Integrating well-controlled core-shell structures into "superaerophobic―electrodes for water oxidation at large current densities. Applied Catalysis B: Environmental, 2021, 286, 119920.	10.8	59
46	Broadband and ultrafast all-optical switching based on transition metal carbide. Nanophotonics, 2021, 10, 2617-2623.	2.9	9
47	Construction of K ⁺ Ion Gradient in Crystalline Carbon Nitride to Accelerate Exciton Dissociation and Charge Separation for Visible Light H ₂ Production. ACS Catalysis, 2021, 11, 6995-7005.	5.5	100
48	Ultraâ€lowâ€loaded Niâ^'Fe Dimer Anchored to Nitrogen/Oxygen Sites for Boosting Electroreduction of Carbon Dioxide. ChemSusChem, 2021, 14, 4499-4506.	3.6	9
49	Microrheology of thermoresponsive poly(N-isopropylacrylamide) microgel dispersions near a substrate surface. Journal of Colloid and Interface Science, 2021, 597, 104-113.	5.0	4
50	Broadband few-layer niobium carbide MXene as saturable absorber for solid-state lasers. Optics and Laser Technology, 2021, 142, 107199.	2.2	21
51	Functionalized carbon nanofiber interlayer towards dendrite-free, Zn-ion batteries. Chemical Engineering Journal, 2021, 425, 131862.	6.6	53
52	Multiple anionic Ni(SO4)0.3(OH)1.4 nanobelts/reduced graphene oxide enabled by enhanced multielectron reactions with superior lithium storage capacity. Chemical Engineering Journal, 2021, 426, 131863.	6.6	3
53	Tuning and understanding the electronic effect of Co–Mo–O sites in bifunctional electrocatalysts for ultralong-lasting rechargeable zinc–air batteries. Journal of Materials Chemistry A, 2021, 9, 21716-21722.	5.2	16
54	Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy and Environmental Science, 2021, 14, 1016-1028.	15.6	130

#	Article	IF	CITATIONS
55	Applications of Few-Layer Nb ₂ C MXene: Narrow-Band Photodetectors and Femtosecond Mode-Locked Fiber Lasers. ACS Nano, 2021, 15, 954-965.	7.3	176
56	ZIF-derived "senbei―like Co ₉ S ₈ /CeO ₂ /Co heterostructural nitrogen-doped carbon nanosheets as bifunctional oxygen electrocatalysts for Zn-air batteries. Nanoscale, 2021, 13, 3227-3236.	2.8	33
57	Bifunctional oxygen electrocatalysis on ultra-thin Co ₉ S ₈ /MnS carbon nanosheets for all-solid-state zinc–air batteries. Journal of Materials Chemistry A, 2021, 9, 22635-22642.	5.2	22
58	A facile evanescent-field imaging approach for monitoring colloidal gel evolution near a surface. Soft Matter, 2021, 17, 4006-4010.	1.2	4
59	Tailoring the ultrafast and nonlinear photonics of MXenes through elemental replacement. Nanoscale, 2021, 13, 15891-15898.	2.8	11
60	Efficient reversible CO/CO2 conversion in solid oxide cells with a phase-transformed fuel electrode. Science China Materials, 2021, 64, 1114-1126.	3.5	31
61	Piezoâ€Photocatalysis over Metal–Organic Frameworks: Promoting Photocatalytic Activity by Piezoelectric Effect. Advanced Materials, 2021, 33, e2106308.	11.1	154
62	Strategic Design of Intelligent-Responsive Nanogel Carriers for Cancer Therapy. ACS Applied Materials & Interfaces, 2021, 13, 54621-54647.	4.0	43
63	Unveiling the reaction mechanism of an Sb ₂ S ₃ –Co ₉ S ₈ /NC anode for high-performance lithium-ion batteries. Nanoscale, 2021, 13, 20041-20051.	2.8	13
64	Nonmetal Doping as a Robust Route for Boosting the Hydrogen Evolution of Metalâ€Based Electrocatalysts. Chemistry - A European Journal, 2020, 26, 3930-3942.	1.7	15
65	Improved interfacial electronic contacts powering high sulfur utilization in all-solid-state lithium–sulfur batteries. Energy Storage Materials, 2020, 25, 436-442.	9.5	85
66	Enhancing oxygen reduction performance of oxide-CNT through in-situ generated nanoalloy bridging. Applied Catalysis B: Environmental, 2020, 263, 118297.	10.8	34
67	Highly efficient utilization of single atoms via constructing 3D and free-standing electrodes for CO2 reduction with ultrahigh current density. Nano Energy, 2020, 70, 104454.	8.2	106
68	Unconventionally fabricating defect-rich NiO nanoparticles within ultrathin metal–organic framework nanosheets to enable high-output oxygen evolution. Journal of Materials Chemistry A, 2020, 8, 2140-2146.	5.2	66
69	Boosting the alkaline hydrogen evolution of Ru nanoclusters anchored on B/N–doped graphene by accelerating water dissociation. Nano Energy, 2020, 68, 104301.	8.2	138
70	Insight into high electrochemical activity of reduced La0·3Sr0·7Fe0·7Ti0·3O3 electrode for high temperature CO2 electrolysis. Electrochimica Acta, 2020, 332, 135464.	2.6	19
71	Constructing a tunable defect structure in TiO ₂ for photocatalytic nitrogen fixation. Journal of Materials Chemistry A, 2020, 8, 334-341.	5.2	73
72	One-pot synthesis of N,S-doped pearl chain tube-loaded Ni3S2 composite materials for high-performance lithium–air batteries. Nanoscale, 2020, 12, 21770-21779.	2.8	7

#	Article	IF	CITATIONS
73	A unique space confined strategy to construct defective metal oxides within porous nanofibers for electrocatalysis. Energy and Environmental Science, 2020, 13, 5097-5103.	15.6	80
74	Understanding the Design Principles of Advanced Aqueous Zincâ€ion Battery Cathodes: From Transport Kinetics to Structural Engineering, and Future Perspectives. Advanced Energy Materials, 2020, 10, 2002354.	10.2	193
75	Ultralight and robust aerogels based on nanochitin towards water-resistant thermal insulators. Carbohydrate Polymers, 2020, 248, 116755.	5.1	28
76	Facile Synthesis of Subâ€Nanometric Copper Clusters by Double Confinement Enables Selective Reduction of Carbon Dioxide to Methane. Angewandte Chemie - International Edition, 2020, 59, 19054-19059.	7.2	152
77	Facile Synthesis of Subâ€Nanometric Copper Clusters by Double Confinement Enables Selective Reduction of Carbon Dioxide to Methane. Angewandte Chemie, 2020, 132, 19216-19221.	1.6	11
78	Removing the barrier to water dissociation on single-atom Pt sites decorated with a CoP mesoporous nanosheet array to achieve improved hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 11246-11254.	5.2	62
79	Highâ€Performance Overall CO ₂ Splitting on Hierarchical Structured Cobalt Disulfide with Partially Removed Sulfur Edges. Advanced Functional Materials, 2020, 30, 2000154.	7.8	26
80	Ultrafast Relaxation Dynamics and Nonlinear Response of Few‣ayer Niobium Carbide MXene. Small Methods, 2020, 4, 2000250.	4.6	84
81	A review on energy chemistry of fast-charging anodes. Chemical Society Reviews, 2020, 49, 3806-3833.	18.7	323
82	Slower Removing Ligands of Metal Organic Frameworks Enables Higher Electrocatalytic Performance of Derived Nanomaterials. Small, 2020, 16, e2002210.	5.2	47
83	Unconventional chemical graphitization and functionalization of graphene oxide toward nanocomposites by degradation of ZnSe[DETA]0.5 hybrid nanobelts. Science China Materials, 2020, 63, 1878-1888.	3.5	1
84	Two dimensional ZIF-derived ultra-thin Cu–N/C nanosheets as high performance oxygen reduction electrocatalysts for high-performance Zn–air batteries. Nanoscale, 2020, 12, 14259-14266.	2.8	34
85	Interfacial redox behaviors of sulfide electrolytes in fast-charging all-solid-state lithium metal batteries. Energy Storage Materials, 2020, 31, 267-273.	9.5	45
86	In situ encapsulated and well dispersed Co3O4 nanoparticles as efficient and stable electrocatalysts for high-performance CO2 reduction. Journal of Materials Chemistry A, 2020, 8, 15675-15680.	5.2	24
87	Slurryâ€Coated Sulfur/Sulfide Cathode with Li Metal Anode for Allâ€Solidâ€State Lithiumâ€Sulfur Pouch Cells. Batteries and Supercaps, 2020, 3, 596-603.	2.4	50
88	Regulating silver nanowire size enables efficient photoelectric conversion. Science China Chemistry, 2020, 63, 1046-1052.	4.2	4
89	Controlling Dendrite Growth in Solid-State Electrolytes. ACS Energy Letters, 2020, 5, 833-843.	8.8	322
90	Recent Progress in Self‣upported Catalysts for CO ₂ Electrochemical Reduction. Small Methods, 2020, 4, 1900826.	4.6	48

#	Article	IF	CITATIONS
91	Facile Preparation of a Fluorineâ€Free, Robust, Superhydrophobic Coating through Dip Coating Combined with Nonâ€Solvent Induced Phase Separation (Dipâ€Coatingâ€NIPS) Method. Macromolecular Chemistry and Physics, 2020, 221, 2000023.	1.1	13
92	MXene/Polymer Membranes: Synthesis, Properties, and Emerging Applications. Chemistry of Materials, 2020, 32, 1703-1747.	3.2	429
93	Nitrogen and sulfur dual-doped high-surface-area hollow carbon nanospheres for efficient CO2 reduction. Chinese Journal of Catalysis, 2020, 41, 830-838.	6.9	49
94	Carbon dioxide electroreduction on single-atom nickel decorated carbon membranes with industry compatible current densities. Nature Communications, 2020, 11, 593.	5.8	330
95	Selfâ€Catalyzed Growth of Co–N–C Nanobrushes for Efficient Rechargeable Zn–Air Batteries. Small, 2020, 16, e2001171.	5.2	84
96	Construction of tetrahedral CoO ₄ vacancies for activating the high oxygen evolution activity of Co _{3â^x} O _{4â^îî} porous nanosheet arrays. Nanoscale, 2020, 12, 11079-11087.	2.8	35
97	Frontispiece: Nonmetal Doping as a Robust Route for Boosting the Hydrogen Evolution of Metalâ€Based Electrocatalysts. Chemistry - A European Journal, 2020, 26, .	1.7	0
98	Unconventional molybdenum carbide phases with high electrocatalytic activity for hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 18030-18038.	5.2	64
99	Bioâ€Inspired Synthesis of Hematite Mesocrystals by Using Xonotlite Nanowires as Growth Modifiers and Their Improved Oxygen Evolution Activity. ChemSusChem, 2019, 12, 3747-3752.	3.6	6
100	Electronic structure engineering of single atomic Ru by Ru nanoparticles to enable enhanced activity for alkaline water reduction. Journal of Materials Chemistry A, 2019, 7, 19531-19538.	5.2	33
101	Nanomeshes: General Synthesis of Ultrathin Metal Borate Nanomeshes Enabled by 3D Barkâ€Like Nâ€Doped Carbon for Electrocatalysis (Adv. Energy Mater. 28/2019). Advanced Energy Materials, 2019, 9, 1970109.	10.2	3
102	Scalable Production of Efficient Single-Atom Copper Decorated Carbon Membranes for CO ₂ Electroreduction to Methanol. Journal of the American Chemical Society, 2019, 141, 12717-12723.	6.6	545
103	Bioinspired Unidirectional Silk Fibroin–Silver Compound Nanowire Composite Scaffold via Interfaceâ€Mediated In Situ Synthesis. Angewandte Chemie - International Edition, 2019, 58, 14152-14156.	7.2	19
104	Bioinspired Unidirectional Silk Fibroin–Silver Compound Nanowire Composite Scaffold via Interfaceâ€Mediated In Situ Synthesis. Angewandte Chemie, 2019, 131, 14290-14294.	1.6	7
105	Interconnected phosphorus-doped CoO-nanoparticles nanotube with three-dimensional accessible surface enables high-performance electrochemical oxidation. Nano Energy, 2019, 66, 104194.	8.2	35
106	Rücktitelbild: Bioinspired Unidirectional Silk Fibroin–Silver Compound Nanowire Composite Scaffold via Interfaceâ€Mediated In Situ Synthesis (Angew. Chem. 40/2019). Angewandte Chemie, 2019, 131, 14528-14528.	1.6	2
107	Highly stable single Pt atomic sites anchored on aniline-stacked graphene for hydrogen evolution reaction. Energy and Environmental Science, 2019, 12, 1000-1007.	15.6	392
108	Coupling pentlandite nanoparticles and dual-doped carbon networks to yield efficient and stable electrocatalysts for acid water oxidation. Journal of Materials Chemistry A, 2019, 7, 461-468.	5.2	54

#	Article	IF	CITATIONS
109	Superhydrophilic Phyticâ€Acidâ€Doped Conductive Hydrogels as Metalâ€Free and Binderâ€Free Electrocatalysts for Efficient Water Oxidation. Angewandte Chemie - International Edition, 2019, 58, 4318-4322.	7.2	168
110	Recent progress in the hybrids of transition metals/carbon for electrochemical water splitting. Journal of Materials Chemistry A, 2019, 7, 14380-14390.	5.2	111
111	General Synthesis of Ultrathin Metal Borate Nanomeshes Enabled by 3D Barkâ€Like Nâ€Doped Carbon for Electrocatalysis. Advanced Energy Materials, 2019, 9, 1901130.	10.2	46
112	Fast Charging Lithium Batteries: Recent Progress and Future Prospects. Small, 2019, 15, e1805389.	5.2	277
113	Zn–Air Batteries: Trifunctional Electrocatalysis on Dualâ€Doped Graphene Nanorings–Integrated Boxes for Efficient Water Splitting and Zn–Air Batteries (Adv. Energy Mater. 14/2019). Advanced Energy Materials, 2019, 9, 1970045.	10.2	3
114	Facile synthesis of polyacrylonitrile-based N/S-codoped porous carbon as an efficient oxygen reduction electrocatalyst for zinc–air batteries. Journal of Materials Chemistry A, 2019, 7, 11223-11233.	5.2	39
115	Superhydrophilic Phyticâ€Acidâ€Doped Conductive Hydrogels as Metalâ€Free and Binderâ€Free Electrocatalysts for Efficient Water Oxidation. Angewandte Chemie, 2019, 131, 4362-4366.	1.6	29
116	Trifunctional Electrocatalysis on Dualâ€Doped Graphene Nanorings–Integrated Boxes for Efficient Water Splitting and Zn–Air Batteries. Advanced Energy Materials, 2019, 9, 1803867.	10.2	173
117	Titanium-substituted ferrite perovskite: An excellent sulfur and coking tolerant anode catalyst for SOFCs. Catalysis Today, 2019, 330, 217-221.	2.2	27
118	Platinum/nitrogen-doped carbon/carbon cloth: a bifunctional catalyst for the electrochemical reduction and carboxylation of CO ₂ with excellent efficiency. Chemical Communications, 2018, 54, 4108-4111.	2.2	25
119	Strongly coupled Sm 0.2 Ce 0.8 O 2 -Na 2 CO 3 nanocomposite for low temperature solid oxide fuel cells: One-step synthesis and super interfacial proton conduction. Journal of Power Sources, 2018, 386, 56-65.	4.0	50
120	BisGMA analogues as monomers and diluents for dental restorative composite materials. Materials Science and Engineering C, 2018, 88, 25-31.	3.8	25
121	Intracellular glutathione-depleting polymeric micelles for cisplatin prodrug delivery to overcome cisplatin resistance of cancers. Journal of Controlled Release, 2018, 273, 30-39.	4.8	77
122	High efficiency oxygen evolution reaction enabled by 3D network composed of nitrogen-doped graphitic carbon-coated metal/metal oxide heterojunctions. Electrochimica Acta, 2018, 265, 620-628.	2.6	23
123	Multifunctional Polymeric Micelles with Amplified Fenton Reaction for Tumor Ablation. Biomacromolecules, 2018, 19, 1990-1998.	2.6	96
124	Nanomaterials and technologies for low temperature solid oxide fuel cells: Recent advances, challenges and opportunities. Nano Energy, 2018, 45, 148-176.	8.2	363
125	Facile fabrication of a 3D network composed of N-doped carbon-coated core–shell metal oxides/phosphides for highly efficient water splitting. Sustainable Energy and Fuels, 2018, 2, 1085-1092.	2.5	40
126	Scalable synthesis of heterostructure molybdenum and nickel sulfides nanosheets for efficient hydrogen generation in alkaline electrolyte. Catalysis Today, 2018, 316, 171-176.	2.2	28

#	Article	IF	CITATIONS
127	Isomeric ruthenium(II) complexes for cancer therapy and cellular imaging. Inorganica Chimica Acta, 2018, 469, 593-599.	1.2	6
128	Thiolactone Chemistry-Based Combinatorial Methodology to Construct Multifunctional Polymers for Efficacious Gene Delivery. Bioconjugate Chemistry, 2018, 29, 23-28.	1.8	8
129	A robust strategy for preparation of sequential stimuli-responsive block copolymer prodrugs via thiolactone chemistry to overcome multiple anticancer drug delivery barriers. Biomaterials, 2018, 154, 261-274.	5.7	60
130	"Turn off-on―phosphorescent sensor for biothiols based on a Ru-Cu ensemble. Sensors and Actuators B: Chemical, 2018, 255, 283-289.	4.0	22
131	Composition Tailoring via N and S Coâ€doping and Structure Tuning by Constructing Hierarchical Pores: Metalâ€Free Catalysts for Highâ€Performance Electrochemical Reduction of CO ₂ . Angewandte Chemie, 2018, 130, 15702-15706.	1.6	63
132	Composition Tailoring via N and S Coâ€doping and Structure Tuning by Constructing Hierarchical Pores: Metalâ€Free Catalysts for Highâ€Performance Electrochemical Reduction of CO ₂ . Angewandte Chemie - International Edition, 2018, 57, 15476-15480.	7.2	162
133	Boosting Electrochemical Hydrogen Evolution of Porous Metal Phosphides Nanosheets by Coating Defective TiO ₂ Overlayers. Small, 2018, 14, e1802755.	5.2	45
134	Coupled molybdenum carbide and nitride on carbon nanosheets: An efficient and durable hydrogen evolution electrocatalyst in both acid and alkaline media. Electrochimica Acta, 2018, 280, 323-331.	2.6	52
135	Crafting MoC2-doped bimetallic alloy nanoparticles encapsulated within N-doped graphene as roust bifunctional electrocatalysts for overall water splitting. Nano Energy, 2018, 50, 212-219.	8.2	205
136	C/N-co-doped Pd coated Ag nanowires as a high-performance electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 2018, 283, 221-227.	2.6	22
137	Selective electrochemical reduction of CO2 by a binder-free platinum/nitrogen-doped carbon nanofiber/copper foil catalyst with remarkable efficiency and reusability. Electrochemistry Communications, 2018, 93, 138-142.	2.3	11
138	Measuring the Interactions between Protein-Coated Microspheres and Polymer Brushes in Aqueous Solutions. Langmuir, 2018, 34, 8798-8806.	1.6	9
139	Redox route to ultrathin metal sulfides nanosheet arrays-anchored MnO 2 nanoparticles as self-supported electrocatalysts for efficient water splitting. Journal of Power Sources, 2018, 398, 159-166.	4.0	43
140	Readily fabricated NiCo alloy-metal oxide-carbon black hybrid catalysts for the oxygen reduction reactions in the alkaline media. International Journal of Hydrogen Energy, 2018, 43, 12637-12645.	3.8	9
141	A Core–Shell‣tructured Silver Nanowire/Nitrogenâ€Doped Carbon Catalyst for Enhanced and Multifunctional Electrofixation of CO ₂ . ChemSusChem, 2018, 11, 3905-3910.	3.6	32
142	Boosting the electrochemical water oxidation reaction of hierarchical nanoarrays through NiFe-oxides/Ag heterointerfaces. Chemical Communications, 2018, 54, 10187-10190.	2.2	18
143	Organic sponge photocatalysis. Green Chemistry, 2017, 19, 2925-2930.	4.6	57
144	Bioinspired, Mechanoâ€Regulated Interfaces for Rationally Designed, Dynamically Controlled Collection of Oil Spills from Water. Global Challenges, 2017, 1, 1600014.	1.8	8

#	Article	IF	CITATIONS
145	Hydrophilic Sponges for Leafâ€Inspired Continuous Pumping of Liquids. Advanced Science, 2017, 4, 1700028.	5.6	54
146	Smart Asymmetric Vesicles with Triggered Availability of Inner Cell-Penetrating Shells for Specific Intracellular Drug Delivery. ACS Applied Materials & amp; Interfaces, 2017, 9, 17727-17735.	4.0	42
147	In situ coating of graphene-like sheets on Li4Ti5O12 particles for lithium-ion batteries. Electrochimica Acta, 2017, 230, 508-513.	2.6	11
148	Elastic Sponges: Hydrophilic Sponges for Leafâ€Inspired Continuous Pumping of Liquids (Adv. Sci. 6/2017). Advanced Science, 2017, 4, .	5.6	1
149	Pr2NiO4-Ag composite as cathode for low temperature solid oxide fuel cells: Effects of silver loading methods and amounts. International Journal of Hydrogen Energy, 2017, 42, 17544-17551.	3.8	11
150	Liquid metal sponges for mechanically durable, all-soft, electrical conductors. Journal of Materials Chemistry C, 2017, 5, 1586-1590.	2.7	136
151	A NIR phosphorescent osmium(<scp>ii</scp>) complex as a lysosome tracking reagent and photodynamic therapeutic agent. Chemical Communications, 2017, 53, 12341-12344.	2.2	52
152	Bifunctional organic sponge photocatalyst for efficient cross-dehydrogenative coupling of tertiary amines to ketones. Chemical Communications, 2017, 53, 12536-12539.	2.2	44
153	Nanocomposites for "nano green energy―applications. , 2017, , 421-449.		0
154	Removing the effect of blooming from potential energy measurement by employing total internal reflection microscopy integrated with video microscopy. Journal of Colloid and Interface Science, 2017, 503, 142-149.	5.0	3
155	Matrix Metalloproteinase-Responsive Multifunctional Peptide-Linked Amphiphilic Block Copolymers for Intelligent Systemic Anticancer Drug Delivery. Bioconjugate Chemistry, 2017, 28, 2190-2198.	1.8	59
156	Microfluidic Patterning of Metal Structures for Flexible Conductors by In Situ Polymerâ€Assisted Electroless Deposition. Advanced Science, 2017, 4, 1600313.	5.6	41
157	Role of carbonate phase in ceria-carbonate composite for low temperature solid oxide fuel cells: A review. International Journal of Energy Research, 2017, 41, 465-481.	2.2	53
158	Controlling the Structure and Antimicrobial Function of N-Halamine-Based Polyurethane Semi-interpenetrating Polymer Networks. Industrial & Engineering Chemistry Research, 2017, 56, 12032-12037.	1.8	13
159	A Highly Sensitive Glucose Biosensor Based on Gold Nanoparticles/Bovine Serum Albumin/Fe3O4 Biocomposite Nanoparticles. Electrochimica Acta, 2016, 222, 1709-1715.	2.6	40
160	A Tremella-Like Nanostructure of Silicon@void@graphene-Like Nanosheets Composite as an Anode for Lithium-Ion Batteries. Nanoscale Research Letters, 2016, 11, 204.	3.1	22
161	Flexible Electronics: 3D Stretchable, Compressible, and Highly Conductive Metal oated Polydimethylsiloxane Sponges (Adv. Mater. Technol. 7/2016). Advanced Materials Technologies, 2016, 1, .	3.0	0
162	High-Performance Non-Noble Electrocatalysts for Oxygen Reduction Using Fluidic Acrylonitrile Telomer as Precursor. Electrochimica Acta, 2016, 211, 814-821.	2.6	1

#	Article	IF	CITATIONS
163	An in-tether sulfilimine chiral center induces β-turn conformation in short peptides. Organic and Biomolecular Chemistry, 2016, 14, 9993-9999.	1.5	14
164	3D Stretchable, Compressible, and Highly Conductive Metalâ€Coated Polydimethylsiloxane Sponges. Advanced Materials Technologies, 2016, 1, 1600117.	3.0	71
165	Surface Roughness Modulates Diffusion and Fibrillation of Amyloid-β Peptide. Langmuir, 2016, 32, 8238-8244.	1.6	53
166	Measuring the Surface–Surface Interactions Induced by Serum Proteins in a Physiological Environment. Langmuir, 2016, 32, 12129-12136.	1.6	9
167	Lanthanide chelate-encapsulated polystyrene nanoparticles for rapid and quantitative immunochromatographic assay of procalcitonin. RSC Advances, 2016, 6, 103463-103470.	1.7	27
168	Three-dimensional network structure of silicon-graphene-polyaniline composites as high performance anodes for Lithium-ion batteries. Electrochimica Acta, 2016, 190, 1032-1040.	2.6	68
169	Photocleavage of DNA and adenine–thymine inclined binding by a novel ruthenium(II) complex with 3,4-dibromo-imidazo[4,5-f][1,10]phenanthroline ligand. Inorganic Chemistry Communication, 2015, 55, 30-35.	1.8	5
170	Nitrogen/sulfur dual-doped mesoporous carbon with controllable morphology as a catalyst support for the methanol oxidation reaction. Carbon, 2015, 87, 424-433.	5.4	33
171	Low-temperature thermal stabilization of polyacrylontrile-based precursor fibers towards efficient preparation of carbon fibers with improved mechanical properties. Polymer, 2015, 76, 131-139.	1.8	28
172	Glucose sensor based on Fe ₃ O ₄ -PEI nanoparticles. Shenzhen Daxue Xuebao (Ligong Ban)/Journal of Shenzhen University Science and Engineering, 2015, 32, 76.	0.1	0
173	Insight into Lithium-rich Layered Cathode Materials Li[Li0.1Ni0.45Mn0.45]O2 in situ Coated with Graphene-like Carbon. Electrochimica Acta, 2014, 149, 42-48.	2.6	16
174	Insitu coating of nitrogen-doped graphene-like nanosheets on silicon as a stable anode for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 11254-11260.	5.2	62
175	Oxidative coupling of methylamine with an aminyl radical: direct amidation catalyzed by I ₂ /TBHP with HCl. Chemical Communications, 2014, 50, 4085-4088.	2.2	46
176	Improved electrochemical performance of spinel LiMn 2 O 4 in situ coated with graphene-like membrane. Journal of Power Sources, 2014, 247, 721-728.	4.0	47
177	Modification of Microvoid Defects in Polyacrylonitrile-Based Carbon Fibers by a Liquid Oligomer of Acrylonitrile. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2014, 30, 753-760.	2.2	1
178	Novel hybrid anti-biofouling coatings with a self-peeling and self-generated micro-structured soft and dynamic surface. Journal of Materials Chemistry B, 2013, 1, 2048.	2.9	25
179	Effects of hydrolyzable comonomer and cross-linking on anti-biofouling terpolymer coatings. Polymer, 2013, 54, 2966-2972.	1.8	22
180	Nitrogen and Sulfur Dualâ€Doped Nonâ€Noble Catalyst Using Fluidic Acrylonitrile Telomer as Precursor for Efficient Oxygen Reduction. Advanced Materials, 2013, 25, 4794-4799.	11.1	179

#	Article	IF	CITATIONS
181	Synthesis of Chromones through LiO <i>t</i> Bu/Airâ€Mediated Oxidation and Regioselective Cyclization of <i>o</i> â€Hydroxyphenyl Propargyl Carbinols. European Journal of Organic Chemistry, 2013, 2013, 2080-2083.	1.2	35
182	An Expedition Through the Last Decade of Heterocycle Construction by Using Palladium, Iron, Copper, or Iodine/tert-Butyl Hydroperoxide. Synlett, 2013, 24, 1322-1339.	1.0	12
183	Structure, property and application of carbon nanotubes and carbon microtubes. Shenzhen Daxue Xuebao (Ligong Ban)/Journal of Shenzhen University Science and Engineering, 2013, 30, 1-11.	0.1	8
184	Fouling-release Property of Water-filled Porous Elastomers. Chinese Journal of Chemical Physics, 2012, 25, 330-334.	0.6	4
185	Synthesis and characterization of a novel addition silicone resin for high power LED packaging. , 2012, , .		0
186	A novel stable amperometric glucose biosensor based on the adsorption of glucose oxidase on poly(methyl methacrylate)–bovine serum albumin core–shell nanoparticles. Sensors and Actuators B: Chemical, 2012, 166-167, 802-808.	4.0	35
187	Adsorption of Core-Shell Poly(Methyl Methacrylate)-Bovine Serum Albumin Nanoparticles on Gold Surface and Its Sensor Application. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2012, 28, 2721-2728.	2.2	1
188	Study on ionic liquid crystalline of tetrahedron pyrrolidinium. Shenzhen Daxue Xuebao (Ligong) Tj ETQq0 0 0 rgB1	Oyerlocl 0.1	2 10 Tf 50 4
189	A metal-free decarboxylative cyclization from natural α-amino acids to construct pyridine derivatives. Green Chemistry, 2011, 13, 578.	4.6	83

190	Coatings with a self-generating hydrogel surface for antifouling. Polymer, 2011, 52, 3738-3744.	1.8	86

191	Self-assembly of lyotropic liquid crystal phases in ternary systems of 1,2-dimethyl-3-hexadecylimidazolium bromide/1-decanol/water. Journal of Colloid and Interface Science, 2010, 342, 354-360.	5.0	21
192	Liquid crystalline phases of 1,2-dimethyl-3-hexadecylimidazolium bromide and binary mixtures with water. Journal of Colloid and Interface Science, 2010, 349, 224-229.	5.0	7
193	Activity and Thermal Stability Improvements of Glucose Oxidase upon Adsorption on Coreâ^'Shell PMMAâ^'BSA Nanoparticles. Langmuir, 2009, 25, 13456-13460.	1.6	46
194	Preparation of Well-Defined Coreâ^'Shell Particles by Cu ²⁺ -Mediated Graft Copolymerization of Methyl Methacrylate from Bovine Serum Albumin. Langmuir, 2008, 24, 10717-10722.	1.6	11