
Guang Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3474851/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Formation and rheology of CO ₂ -responsive anionic wormlike micelles based clear fracturing fluid system. Journal of Dispersion Science and Technology, 2023, 44, 736-749.	1.3	3
2	Profile control technology of the DPG particles three-phase foam system. , 2022, , 287-338.		0
3	Preparation technology of bulk gel. , 2022, , 11-45.		1
4	DPG-strengthened polymer/surfactant combination flooding technology. , 2022, , 259-286.		0
5	DPG soft heterogeneous combination flooding technology. , 2022, , 155-257.		1
6	The profile control technology of multiscale DPG particles. , 2022, , 97-153.		1
7	Performance evaluation of a novel CO2-induced clean fracturing fluid in low permeability formations. Journal of Petroleum Science and Engineering, 2022, 208, 109674.	2.1	10
8	Conformance control by a microgel in a multi-layered heterogeneous reservoir during CO2 enhanced oil recovery process. Chinese Journal of Chemical Engineering, 2022, 43, 324-334.	1.7	9
9	Experimental investigation on migration and retention mechanisms of elastic gel particles (EGPs) in pore-throats using multidimensional visualized models. Petroleum Science, 2022, 19, 2374-2386.	2.4	3
10	Soft Movable Polymer Gel for Controlling Water Coning of Horizontal Well in Offshore Heavy Oil Cold Production. Gels, 2022, 8, 352.	2.1	4
11	Anionic surfactant based on oil-solid interfacial interaction control for efficient residual oil development. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129396.	2.3	5
12	Gelling Behavior of PAM/Phenolic Crosslinked Gel and Its Profile Control in a Low-Temperature and High-Salinity Reservoir. Gels, 2022, 8, 433.	2.1	9
13	Chromatography and oil displacement mechanism of a dispersed particle gel strengthened Alkali/Surfactant/Polymer combination flooding system for enhanced oil recovery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125642.	2.3	31
14	New channel flow control agent for high-temperature and high-salinity fractured-vuggy carbonate reservoirs. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2021, 43, 337-348.	1.2	3
15	Molecular behavior and interaction between THSB and DPG particles at the gas/liquid interface. Journal of Molecular Liquids, 2021, 329, 115487.	2.3	2
16	Investigation of a novel enhanced stabilized foam: Nano-graphite stabilized foam. Journal of Molecular Liquids, 2021, 343, 117466.	2.3	15
17	Interfacial characteristics and the stability mechanism of a dispersed particle gel (DPG) three-phase foam. Journal of Molecular Liquids, 2020, 301, 112425.	2.3	21
18	Experimental Study of Temperature Resistance and Salt Tolerance Dispersed Particle Gel Three-Phase Foam. Springer Series in Geomechanics and Geoengineering, 2019, , 1041-1054.	0.0	0

GUANG ZHAO

#	Article	IF	CITATIONS
19	Preparation of low-temperature expandable graphite as a novel steam plugging agent in heavy oil reservoirs. Journal of Molecular Liquids, 2019, 293, 111535.	2.3	23
20	Study on the channel flow control regulation of particle agents in fractured-vuggy carbonate reservoirs via CFD-DEM coupling method. Journal of Petroleum Science and Engineering, 2019, 180, 495-503.	2.1	15
21	Thermal-resistant, shear-stable and salt-tolerant polyacrylamide/surface-modified graphene oxide composite. Journal of Materials Science, 2019, 54, 14752-14762.	1.7	24
22	Molecular simulation study on the rheological properties of a pH-responsive clean fracturing fluid system. Fuel, 2019, 253, 677-684.	3.4	24
23	Expandable graphite particles as a novel in-depth steam channeling control agent in heavy oil reservoirs. Chemical Engineering Journal, 2019, 368, 668-677.	6.6	31
24	Novel Chemical Flooding System Based on Dispersed Particle Gel Coupling In-Depth Profile Control and High Efficient Oil Displacement. Energy & Fuels, 2019, 33, 3123-3132.	2.5	39
25	A novel binary compound flooding system based on DPG particles for enhancing oil recovery. Arabian Journal of Geosciences, 2019, 12, 1.	0.6	5
26	Smart mobility control agent for enhanced oil recovery during CO2 flooding in ultra-low permeability reservoirs. Fuel, 2019, 241, 442-450.	3.4	109
27	A novel strategy to create bifunctional silica-protected quantum dot nanoprobe for fluorescence imaging. Sensors and Actuators B: Chemical, 2019, 282, 27-35.	4.0	15
28	Solid-like film formed by nano-silica self-assembly at oil–water interface. Chemical Engineering Science, 2019, 195, 51-61.	1.9	18
29	Influence of CO2 on the adsorption of CH4 on shale using low-field nuclear magnetic resonance technique. Fuel, 2019, 238, 51-58.	3.4	29
30	CO2-controllable smart nanostructured fluids in a pseudo Gemini surfactant system. Journal of Molecular Liquids, 2019, 274, 133-139.	2.3	23
31	Investigation on flow characteristic of viscoelasticity fluids in pore-throat structure. Journal of Petroleum Science and Engineering, 2019, 174, 821-832.	2.1	14
32	Enhanced Oil Recovery Study of a New Mobility Control System on the Dynamic Imbibition in a Tight Oil Fracture Network Model. Energy & Fuels, 2018, 32, 2908-2915.	2.5	26
33	Emulsion behavior control and stability study through decorating silica nano-particle with dimethyldodecylamine oxide at n-heptane/water interface. Chemical Engineering Science, 2018, 179, 73-82.	1.9	24
34	Preparation and application of a novel phenolic resin dispersed particle gel for in-depth profile control in low permeability reservoirs. Journal of Petroleum Science and Engineering, 2018, 161, 703-714.	2.1	86
35	Adsorption and retention behaviors of heterogeneous combination flooding system composed of dispersed particle gel and surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 250-261.	2.3	27
36	Characteristics and displacement mechanisms of the dispersed particle gel soft heterogeneous compound flooding system. Petroleum Exploration and Development, 2018, 45, 481-490.	3.0	43

GUANG ZHAO

#	Article	IF	CITATIONS
37	Dispersed Particle Gel-Strengthened Polymer/Surfactant as a Novel Combination Flooding System for Enhanced Oil Recovery. Energy & Fuels, 2018, 32, 11317-11327.	2.5	57
38	Interfacial rheology of a novel dispersed particle gel soft heterogeneous combination flooding system at the oil-water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 559, 23-34.	2.3	20
39	A Study of the Stability Mechanism of the Dispersed Particle Gel Three-Phase Foam Using the Interfacial Dilational Rheology Method. Materials, 2018, 11, 699.	1.3	17
40	Study on rheology and microstructure of phenolic resin cross-linked nonionic polyacrylamide (NPAM) gel for profile control and water shutoff treatments. Journal of Petroleum Science and Engineering, 2018, 169, 546-552.	2.1	47
41	Experimental Study on Low Interfacial Tension Foam for Enhanced Oil Recovery in High-Temperature and High-Salinity Reservoirs. Energy & Fuels, 2017, 31, 13416-13426.	2.5	27
42	Investigation on matching relationship between dispersed particle gel (DPC) and reservoir pore-throats for in-depth profile control. Fuel, 2017, 207, 109-120.	3.4	91
43	Experimental research of hydroquinone (HQ)/hexamethylene tetramine (HMTA) gel for water plugging treatments in highâ€ŧemperature and highâ€salinity reservoirs. Journal of Applied Polymer Science, 2017, 134, .	1.3	25
44	New insights into the hydroquinone (HQ)–hexamethylenetetramine (HMTA) gel system for water shut-off treatment in high temperature reservoirs. Journal of Industrial and Engineering Chemistry, 2016, 35, 20-28.	2.9	64
45	Research on a temporary plugging agent based on polymer gel for reservoir acidification. Journal of Petroleum Exploration and Production, 2016, 6, 465-472.	1.2	19
46	Development, formation mechanism and performance evaluation of a reusable viscoelastic surfactant fracturing fluid. Journal of Industrial and Engineering Chemistry, 2016, 37, 115-122.	2.9	68
47	Stability mechanism of a novel three-Phase foam by adding dispersed particle gel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 497, 214-224.	2.3	64
48	Synthesis and application of nonionic polyacrylamide with controlled molecular weight for fracturing in low permeability oil reservoirs. Journal of Applied Polymer Science, 2015, 132, .	1.3	12
49	Enhanced Foam Stability By Adding Dispersed Particle Gel: A New 3-Phase Foam Study. , 2015, , .		3
50	Enhanced foam stability by adding comb polymer gel for in-depth profile control in high temperature reservoirs. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 482, 115-124.	2.3	96
51	Experimental study and application of gels formed by nonionic polyacrylamide and phenolic resin for in-depth profile control. Journal of Petroleum Science and Engineering, 2015, 135, 552-560.	2.1	88
52	Impact of surfactant in fracturing fluid on the adsorption–desorption processes of coalbed methane. Journal of Natural Gas Science and Engineering, 2015, 26, 35-41.	2.1	35
53	Study of a Novel Self-Thickening Polymer for Improved Oil Recovery. Industrial & Engineering Chemistry Research, 2015, 54, 9667-9674.	1.8	17
54	Multiâ€Responsive Wormlike Micelles Based on <i>N</i> â€alkylâ€ <i>N</i> â€Methylpiperidinium Bromide Cationic Surfactant. Journal of Surfactants and Detergents, 2015, 18, 739-746.	1.0	13

Guang Zhao

#	Article	IF	CITATIONS
55	pH-switchable wormlike micelle formation by N-alkyl-N-methylpyrrolidinium bromide-based cationic surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 482, 283-289.	2.3	22
56	Thermal and pH dual stimulated wormlike micelle in aqueous N-cetyl-N-methylpyrrolidinium bromide cationic surfactant-aromatic dibasic acid system. Colloid and Polymer Science, 2015, 293, 2617-2624.	1.0	17
57	Investigation of the Profile Control Mechanisms of Dispersed Particle Gel. PLoS ONE, 2014, 9, e100471.	1.1	34
58	The use of environmental scanning electron microscopy for imaging the microstructure of gels for profile control and water shutoff treatments. Journal of Applied Polymer Science, 2014, 131, .	1.3	32
59	The investigation of a new moderate water shutoff agent: Cationic polymer and anionic polymer. Journal of Applied Polymer Science, 2014, 131, .	1.3	16
60	A study on environmentâ€friendly polymer gel for water shutâ€off treatments in lowâ€ŧemperature reservoirs. Journal of Applied Polymer Science, 2014, 131, .	1.3	55
61	Study on formation of gels formed by polymer and zirconium acetate. Journal of Sol-Gel Science and Technology, 2013, 65, 392-398.	1.1	53
62	Study on Performance Evaluation of Dispersed Particle Gel for Improved Oil Recovery. Journal of Energy Resources Technology, Transactions of the ASME, 2013, 135, .	1.4	28
63	Investigation of Preparation and Mechanisms of a Dispersed Particle Gel Formed from a Polymer Gel at Room Temperature. PLoS ONE, 2013, 8, e82651.	1.1	27
64	Preparation of Dispersed Particle Gel (DPG) through a polymer gel at low temperature. , 2013, , 89-93.		0
65	Preparation of Dispersed Particle Gel (DPG) through a Simple High Speed Shearing Method. Molecules, 2012, 17, 14484-14489.	1.7	46
66	Study on the channel flow control mechanism of an equidensity particle agent in fractured-vuggy carbonate reservoirs. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-13.	1.2	1