Junaid Haider

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3474739/publications.pdf

Version: 2024-02-01

57	2,254	27	45
papers	citations	h-index	g-index
60	60	60	1427
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Advances in Colloid and Interface Science, 2022, 300, 102597.	14.7	301
2	Green Synthesized Phytochemically (Zingiber officinale and Allium sativum) Reduced Nickel Oxide Nanoparticles Confirmed Bactericidal and Catalytic Potential. Nanoscale Research Letters, 2020, 15, 50.	5.7	146
3	Dye degradation performance, bactericidal behavior and molecular docking analysis of Cu-doped TiO ₂ nanoparticles. RSC Advances, 2020, 10, 24215-24233.	3.6	96
4	Photocatalytic and bactericidal properties and molecular docking analysis of TiO ₂ nanoparticles conjugated with Zr for environmental remediation. RSC Advances, 2020, 10, 30007-30024.	3.6	82
5	Formation of chitosan nanoparticles to encapsulate krill oil (Euphausia superba) for application as a dietary supplement. Food Hydrocolloids, 2017, 63, 27-34.	10.7	79
6	Influence of carrier oil type, particle size on inÂvitro lipid digestion and eugenol release in emulsion and nanoemulsions. Food Hydrocolloids, 2016, 52, 415-422.	10.7	74
7	2D chemically exfoliated hexagonal boron nitride (hBN) nanosheets doped with Ni: synthesis, properties and catalytic application for the treatment of industrial wastewater. Applied Nanoscience (Switzerland), 2020, 10, 3525-3528.	3.1	66
8	Photocatalytic, dye degradation, and bactericidal behavior of Cu-doped ZnO nanorods and their molecular docking analysis. Dalton Transactions, 2020, 49, 8314-8330.	3.3	66
9	Recent advances and perspectives of aggregation-induced emission as an emerging platform for detection and bioimaging. TrAC - Trends in Analytical Chemistry, 2019, 119, 115637.	11.4	62
10	Influence of OSA-starch on the physico chemical characteristics of flax seed oil-eugenol nanoemulsions. Food Hydrocolloids, 2017, 66, 365-377.	10.7	61
11	Physicochemical properties of \hat{l}^2 -carotene and eugenol co-encapsulated flax seed oil powders using OSA starches as wall material. Food Hydrocolloids, 2017, 73, 274-283.	10.7	61
12	Graphene Oxide-Doped MgO Nanostructures for Highly Efficient Dye Degradation and Bactericidal Action. Nanoscale Research Letters, 2021, 16, 56.	5.7	58
13	Synergistic effect of Bi-doped exfoliated MoS ₂ nanosheets on their bactericidal and dye degradation potential. Dalton Transactions, 2020, 49, 5362-5377.	3.3	52
14	Novel Ag/cellulose-doped CeO2 quantum dots for efficient dye degradation and bactericidal activity with molecular docking study. Carbohydrate Polymers, 2021, 269, 118346.	10.2	50
15	Reduced graphene oxide nanosheets doped by Cu with highly efficient visible light photocatalytic behavior. Journal of Alloys and Compounds, 2020, 837, 155588.	5.5	48
16	Physicochemical stability of \hat{l}^2 -carotene and $\hat{l}\pm$ -tocopherol enriched nanoemulsions: Influence of carrier oil, emulsifier and antioxidant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 550-559.	4.7	47
17	A comparative study of dirac 2D materials, TMDCs and 2D insulators with regard to their structures and photocatalytic/sonophotocatalytic behavior. Applied Nanoscience (Switzerland), 2020, 10, 3875-3899.	3.1	47
18	Elimination of dyes by catalytic reduction in the absence of light: A review. Journal of Materials Science, 2021, 56, 15572-15608.	3.7	47

#	Article	IF	CITATIONS
19	Liquid-phase exfoliated MoS ₂ nanosheets doped with <i>p</i> -type transition metals: a comparative analysis of photocatalytic and antimicrobial potential combined with density functional theory. Dalton Transactions, 2021, 50, 6598-6619.	3.3	46
20	Bimetallic Ag/Cu incorporated into chemically exfoliated MoS ₂ nanosheets to enhance its antibacterial potential: <i>ii silico</i> ii molecular docking studies. Nanotechnology, 2020, 31, 275704.	2.6	44
21	h-BN nanosheets doped with transition metals for environmental remediation; a DFT approach and molecular docking analysis. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 272, 115365.	3.5	42
22	Formulation, characterization and antimicrobial properties of black cumin essential oil nanoemulsions stabilized by OSA starch. Journal of Food Science and Technology, 2017, 54, 3358-3365.	2.8	39
23	Doping of Mg on ZnO Nanorods Demonstrated Improved Photocatalytic Degradation and Antimicrobial Potential with Molecular Docking Analysis. Nanoscale Research Letters, 2021, 16, 78.	5.7	36
24	Bactericidal behavior of chemically exfoliated boron nitride nanosheets doped with zirconium. Applied Nanoscience (Switzerland), 2020, 10, 2339-2349.	3.1	30
25	Silver decorated 2D nanosheets of GO and MoS ₂ serve as nanocatalyst for water treatment and antimicrobial applications as ascertained with molecular docking evaluation. Nanotechnology, 2021, 32, 255704.	2.6	30
26	Development of Multi-concentration Cu:Ag Bimetallic Nanoparticles as a Promising Bactericidal for Antibiotic-Resistant Bacteria as Evaluated with Molecular Docking Study. Nanoscale Research Letters, 2021, 16, 91.	5.7	30
27	Dye degradation, antibacterial and in-silico analysis of Mg/cellulose-doped ZnO nanoparticles. International Journal of Biological Macromolecules, 2021, 185, 153-164.	7. 5	30
28	A review of photocatalytic characterization, and environmental cleaning, of metal oxide nanostructured materials. Sustainable Materials and Technologies, 2021, 30, e00343.	3.3	30
29	Techno-functional properties and sustainable application of nanoparticles-based Lavandula angustifolia essential oil fabricated using unsaturated lipid-carrier and biodegradable wall material. Industrial Crops and Products, 2019, 136, 66-76.	5.2	29
30	Growth kinetics, fatty acid composition and metabolic activity changes of Crypthecodinium cohnii under different nitrogen source and concentration. AMB Express, 2017, 7, 85.	3.0	28
31	Evaluation of bactericidal potential and catalytic dye degradation of multiple morphology based chitosan/polyvinylpyrrolidone-doped bismuth oxide nanostructures. Nanoscale Advances, 2022, 4, 2713-2728.	4.6	28
32	Comparative Study of Selenides and Tellurides of Transition Metals (Nb and Ta) with Respect to its Catalytic, Antimicrobial, and Molecular Docking Performance. Nanoscale Research Letters, 2020, 15, 144.	5.7	27
33	Toward efficient dye degradation and the bactericidal behavior of Mo-doped La ₂ O ₃ nanostructures. Nanoscale Advances, 2022, 4, 926-942.	4.6	27
34	Novel prism shaped C ₃ N ₄ -doped Fe@Co ₃ O ₄ nanocomposites and their dye degradation and bactericidal potential with molecular docking study. RSC Advances, 2021, 11, 23330-23344.	3.6	26
35	Promising performance of polyvinylpyrrolidone-doped bismuth oxyiodide quantum dots for antibacterial and catalytic applications. Applied Nanoscience (Switzerland), 2022, 12, 2621-2633.	3.1	26
36	Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization of Cellulose. Journal of Agricultural and Food Chemistry, 2020, 68, 15257-15266.	5.2	24

#	Article	IF	CITATIONS
37	Nitrogen and Carbon Nitride-Doped TiO2 for Multiple Catalysis and Its Antimicrobial Activity. Nanoscale Research Letters, 2021, 16, 119.	5.7	24
38	Potential applications of hydrophobically modified inulin as an active ingredient in functional foods and drugs - A review. Carbohydrate Polymers, 2021, 252, 117176.	10.2	22
39	Effective Disposal of Methylene Blue and Bactericidal Benefits of Using GO-Doped MnO ₂ Nanorods Synthesized through One-Pot Synthesis. ACS Omega, 2021, 6, 24866-24878.	3.5	20
40	Molecular docking and DFT analyses of magnetic cobalt doped MoS2 and BN nanocomposites for catalytic and antimicrobial explorations. Surfaces and Interfaces, 2021, 27, 101571.	3.0	19
41	Dye degradation, antibacterial activity and molecular docking analysis of cellulose/polyvinylpyrrolidone-doped cadmium sulphide quantum dots. International Journal of Biological Macromolecules, 2022, 214, 264-277.	7.5	16
42	Polyvinylpyrrolidone and chitosan-doped lanthanum oxide nanostructures used as anti-bacterial agents and nano-catalyst. Applied Nanoscience (Switzerland), 2022, 12, 2227-2239.	3.1	14
43	Experimental and Computational Study of Zr and CNC-Doped MnO ₂ Nanorods for Photocatalytic and Antibacterial Activity. ACS Omega, 2022, 7, 14045-14056.	3 . 5	14
44	Facile synthesis of silver and polyacrylic acid doped magnesium oxide nanostructure for photocatalytic dye degradation and bactericidal behavior. Applied Nanoscience (Switzerland), 2022, 12, 2409-2419.	3.1	14
45	Bactericidal action and molecular docking studies of catalytic Cu-doped NiO composited with cellulose nanocrystals. International Journal of Biological Macromolecules, 2022, 195, 440-448.	7.5	13
46	Efficient dye degradation, antimicrobial behavior and molecular docking analysis of gold (Au) and cellulose nanocrystals (CNC)-doped strontium oxide nanocomposites. Journal of Nanostructure in Chemistry, 2022, 12, 933-950.	9.1	12
47	Impact of Bi Doping into Boron Nitride Nanosheets on Electronic and Optical Properties Using Theoretical Calculations and Experiments. Nanoscale Research Letters, 2021, 16, 82.	5 . 7	11
48	Graphene oxide-ZnO nanorods for efficient dye degradation, antibacterial and in-silico analysis. Applied Nanoscience (Switzerland), 2022, 12, 165-177.	3.1	11
49	Comparative evaluation of pseudocereal peptides: A review of their nutritional contribution. Trends in Food Science and Technology, 2022, 122, 287-313.	15.1	11
50	In-situ phenylhydrazine chemical detection based on facile Zr-doped MoS2 nanocomposites (NCs) for environmental safety. Journal of the Taiwan Institute of Chemical Engineers, 2021, 120, 267-277.	5. 3	10
51	Highly Efficient Industrial Dye Degradation, Bactericidal Properties, and <i>In Silico</i> Molecular Docking Analysis of Ag/Cellulose-Doped CuO Nanostructures. ACS Omega, 2022, 7, 17043-17054.	3 . 5	10
52	Photocatalytic, Bactericidal and Molecular Docking Analysis of Annealed Tin Oxide Nanostructures. Nanoscale Research Letters, 2021, 16, 33.	5.7	8
53	Metal Oxide Nanoparticles for Cellular Response, Anti-Cancer Drugs Loading and Adsorption Kinetics. Nanoscience and Nanotechnology Letters, 2019, 11, 470-479.	0.4	6
54	Advanced Carbon Materials: Base of 21st Century Scientific Innovations in Chemical, Polymer, Sensing and Energy Engineering. , 0, , .		2

#	Article	IF	CITATIONS
55	Comparative analysis of nine different small heat shock protein gene promoters in Oryza sativa L. subsp. indica. Plant Systematics and Evolution, 2016, 302, 1195-1206.	0.9	1
56	Influence of various transition metals incorporated into tellurium used as antimicrobial agent and textile dye degrader. Applied Nanoscience (Switzerland), 2020, 10, 4241-4254.	3.1	1
57	An update on hypoallergenicity of peanut and soybean: where are we now?. RSC Advances, 2016, 6, 79185-79195.	3.6	0