
florian Berthiol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3474381/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	1,2-Additions on Chiral N-Sulfinylketimines: An Easy Access to Chiral α-Tertiary Amines. Synthesis, 2022, 54, 2309-2329.	2.3	4

2 Copper Complexes of the Tetradentate N,N′ â€Bis(2â€aminoâ€3,5â€di―tert â€butylphenyl)â€2,2′â€diaminobjphenyl Ligand. European Journal of Inorganic Chemistry, 2021, 2021, 1481-1489.

3	Application of Chiral Sulfinamides into Formation and Reduction of Sulfinylketimines to Obtain Valuable αâ€Chiral Primary Amines. European Journal of Organic Chemistry, 2020, 2020, 5901-5916.	2.4	6
4	Electronic Structure and Reactivity of One-Electron-Oxidized Copper(II) Bis(phenolate)–Dipyrrin Complexes. Inorganic Chemistry, 2018, 57, 9708-9719.	4.0	32
5	An unprecedented 7-membered ring enamide cyclization through hypervalent iodine phenolic oxidation. Tetrahedron Letters, 2018, 59, 2293-2295.	1.4	2
6	A Structurally Characterized Cu ^{III} Complex Supported by a Bis(anilido) Ligand and Its Oxidative Catalytic Activity. Chemistry - A European Journal, 2017, 23, 13929-13940.	3.3	13
7	Copper(II) complex of a Schiff base of dehydroacetic acid: Characterization and aerobic oxidation of benzyl alcohol. Inorganic Chemistry Communication, 2016, 72, 17-22.	3.9	14
8	Reagent and Catalyst Design for Asymmetric Hypervalent lodine Oxidations. Synthesis, 2015, 47, 587-603.	2.3	109
9	3,3′-Diiodobinaphthol and 3,3′-Diiodobiphenol Derivatives as Hypervalent Iodine Organocatalysts for the α-Oxytosylation of Ketones. Synthesis, 2015, 47, 3859-3873.	2.3	22
10	BINOLâ€Fused Maleimides – A New Class of <i>C</i> ₂ ‣ymmetric Chiral Imides. European Journal of Organic Chemistry, 2013, 2013, 1041-1045.	2.4	10
11	3,3′â€Diiodoâ€BINOLâ€Fused Maleimides as Chiral Hypervalent Iodine(III) Organocatalysts. European Journal Organic Chemistry, 2013, 2013, 8094-8096.	of 2.4	32
12	Efficient Synthesis of Substituted Polyarylphthalimides via Cycloaddition of Cyclopentadienones with 2-Bromomaleimide. Synlett, 2011, 2011, 1293-1295.	1.8	4
12 13	Efficient Synthesis of Substituted Polyarylphthalimides via Cycloaddition of Cyclopentadienones with	1.8 2.8	4 35
	Efficient Synthesis of Substituted Polyarylphthalimides via Cycloaddition of Cyclopentadienones with 2-Bromomaleimide. Synlett, 2011, 2011, 1293-1295. Ruthenacycles and Iridacycles as Catalysts for Asymmetric Transfer Hydrogenation and Racemisation.		
13	Efficient Synthesis of Substituted Polyarylphthalimides via Cycloaddition of Cyclopentadienones with 2-Bromomaleimide. Synlett, 2011, 2011, 1293-1295. Ruthenacycles and Iridacycles as Catalysts for Asymmetric Transfer Hydrogenation and Racemisation. Topics in Catalysis, 2010, 53, 1002-1008. Combining Designer Cells and Click Chemistry for a Oneâ€Pot Fourâ€6tep Preparation of Enantiopure	2.8	35
13 14	 Efficient Synthesis of Substituted Polyarylphthalimides via Cycloaddition of Cyclopentadienones with 2-Bromomaleimide. Synlett, 2011, 2011, 1293-1295. Ruthenacycles and Iridacycles as Catalysts for Asymmetric Transfer Hydrogenation and Racemisation. Topics in Catalysis, 2010, 53, 1002-1008. Combining Designer Cells and Click Chemistry for a Oneâ€Pot Four tep Preparation of Enantiopure βâ€Hydroxytriazoles. Advanced Synthesis and Catalysis, 2010, 352, 2111-2115. Unexpected Reduction of N-Hydroxyphthalimides to Phthalimides - Orthogonal Reduction of 	2.8 4.3	35 51
13 14 15	 Efficient Synthesis of Substituted Polyarylphthalimides via Cycloaddition of Cyclopentadienones with 2-Bromomaleimide. Synlett, 2011, 2011, 1293-1295. Ruthenacycles and Iridacycles as Catalysts for Asymmetric Transfer Hydrogenation and Racemisation. Topics in Catalysis, 2010, 53, 1002-1008. Combining Designer Cells and Click Chemistry for a Oneâ€Pot Four‧tep Preparation of Enantiopure βâ€Hydroxytriazoles. Advanced Synthesis and Catalysis, 2010, 352, 2111-2115. Unexpected Reduction of N-Hydroxyphthalimides to Phthalimides - Orthogonal Reduction of Functionalized N-Hydroxyphthalimides. Synlett, 2010, 2010, 2263-2266. Asymmetric Hydrogenation of α,βâ€Unsaturated Ester―Phosphonates. Advanced Synthesis and Catalysis, 	2.8 4.3 1.8	35 51 2

FLORIAN BERTHIOL

#	Article	IF	CITATIONS
19	Dynamic Kinetic Resolution of Racemic Î ² -Haloalcohols: Direct Access to Enantioenriched Epoxides. Journal of the American Chemical Society, 2008, 130, 13508-13509.	13.7	149
20	Sulfonylimidates as Nucleophiles in Catalytic Addition Reactions. Journal of the American Chemical Society, 2008, 130, 1804-1805.	13.7	64
21	Catalytic direct-type substitution reaction of α-alkyl enolates: a Pd/BrÃ,nsted base-catalysed approach to the decarboxylative allylation of sulfonylimidates. Chemical Communications, 2008, , 6354.	4.1	25
22	Palladium-Tetraphosphine Complex Catalysed Heck Reaction of Vinyl Bromides with Alkenes: A Powerful Access to Conjugated Dienes. Synthesis, 2008, 2008, 1142-1152.	2.3	13
23	Palladium-Tetraphosphine Catalysed Heck Reaction with Simple Alkenes: Influence of Reaction Conditions on the Migration of the Double Bond. Synthesis, 2007, 2007, 1683-1696.	2.3	4
24	Catalytic Asymmetric Michael Reactions with Enamides as Nucleophiles. Angewandte Chemie - International Edition, 2007, 46, 7803-7805.	13.8	57
25	Suzuki Coupling of 2â€Chloroacrylonitrile, Methyl 2â€Chloroacrylate, or 2â€Chloropropâ€1â€enâ€3â€ol with Arylboronic Acids Catalyzed by a Palladiumâ€Tetraphosphine Complex. Synthetic Communications, 2006, 36, 3019-3027.	2.1	8
26	Synthesis of β-aryl ketones by tetraphosphine/palladium catalysed Heck reactions of 2- or 3-substituted allylic alcohols with aryl bromides. Tetrahedron, 2006, 62, 4372-4383.	1.9	41
27	Heck reactions of aryl halides with alk-1-en-3-ol derivatives catalysed by a tetraphosphine–palladium complex. Applied Organometallic Chemistry, 2006, 20, 855-868.	3.5	19
28	Heck Reaction of Protected Alk-1-en-3-ol, -4-ols, -5-ol or -6-ol with Aryl Bromides Catalysed by a Palladium Complex Derived from a Tetraphosphine. Synthesis, 2006, 2006, 1518-1536.	2.3	0
29	Heck Reaction of Protected Allyl Alcohols with Aryl Bromides Catalyzed by a Tetraphosphanepalladium Complex. European Journal of Organic Chemistry, 2005, 2005, 1367-1377.	2.4	16
30	Direct synthesis of cinnamaldehyde derivatives by reaction of aryl bromides with 3,3-diacetoxypropene catalyzed by a palladium–tetraphosphine complex. Catalysis Letters, 2005, 102, 281-284.	2.6	16
31	Reaction of aryl di-, tri-, or tetrabromides with arylboronic acids or alkenes in the presence of a palladium-tetraphosphine catalyst. Journal of Organometallic Chemistry, 2004, 689, 2786-2798.	1.8	35
32	Suzuki Cross-Coupling Reactions between Alkenylboronic Acids and Aryl Bromides Catalysed by a Tetraphosphane-Palladium Catalyst. European Journal of Organic Chemistry, 2004, 2004, 1075-1082.	2.4	58
33	Suzuki Cross-Coupling Reactions Between Alkenylboronic Acids and Aryl Bromides Catalyzed by a Tetraphosphane-Palladium Catalyst ChemInform, 2004, 35, no.	0.0	0
34	Heck Reactions of Aryl Bromides with Alk-1-en-3-ol Derivatives Catalyzed by a Tetraphosphine/Palladium Complex ChemInform, 2004, 35, no.	0.0	0
35	Reaction of Aryl Di-, Tri-, or Tetrabromides with Arylboronic Acids or Alkenes in the Presence of a Palladium-Tetraphosphine Catalyst ChemInform, 2004, 35, no.	0.0	0
36	Reaction of Aryl Di-, Tri-, or Tetrabromides with Arylboronic Acids or Alkenes in the Presence of a Palladium-Tetraphosphine Catalyst ChemInform, 2004, 35, no.	0.0	0

FLORIAN BERTHIOL

#	Article	IF	CITATIONS
37	Heck reactions of aryl bromides with alk-1-en-3-ol derivatives catalysed by a tetraphosphine/palladium complex. Tetrahedron Letters, 2004, 45, 5633-5636.	1.4	33
38	Synthesis of Polysubstituted Alkenes by Heck Vinylation or Suzuki Cross-Coupling Reactions in the Presence of a Tetraphosphaneâ^'Palladium Catalyst. European Journal of Organic Chemistry, 2003, 2003, 1091-1096.	2.4	57
39	Heck Reaction of Aryl Halides with Linear or Cyclic Alkenes Catalyzed by a Tetraphosphine/Palladium Catalyst ChemInform, 2003, 34, no.	0.0	0
40	Palladium-Tetraphosphine Complex: An Efficient Catalyst for the Coupling of Aryl Halides with Alkynes ChemInform, 2003, 34, no.	0.0	0
41	Heck reaction of aryl halides with linear or cyclic alkenes catalysed by a tetraphosphine/palladium catalyst. Tetrahedron Letters, 2003, 44, 1221-1225.	1.4	51
42	Palladium-tetraphosphine complex: an efficient catalyst for the coupling of aryl halides with alkynes. Organic and Biomolecular Chemistry, 2003, 1, 2235.	2.8	61
43	Palladium Catalysed Cross-Coupling of Aryl Bromides with Functionalised Arylboronic Acids in the Presence of a Tetraphosphine Ligand. Synlett, 2002, 2002, 1807-1810.	1.8	7
44	Heck reaction with heteroaryl halides in the presence of a palladium-tetraphosphine catalyst. Tetrahedron Letters, 2002, 43, 5625-5628.	1.4	60