Kay Lucek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3474342/publications.pdf

Version: 2024-02-01

394286 254106 2,345 47 19 43 citations g-index h-index papers 47 47 47 3304 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genomics and the origin of species. Nature Reviews Genetics, 2014, 15, 176-192.	7.7	850
2	Genomics of Rapid Incipient Speciation in Sympatric Threespine Stickleback. PLoS Genetics, 2016, 12, e1005887.	1.5	195
3	Transitions between phases of genomic differentiation during stick-insect speciation. Nature Ecology and Evolution, 2017, 1, 82.	3.4	144
4	A key metabolic gene for recurrent freshwater colonization and radiation in fishes. Science, 2019, 364, 886-889.	6.0	109
5	Hybridization between distant lineages increases adaptive variation during a biological invasion: stickleback in Switzerland. Molecular Ecology, 2010, 19, 3995-4011.	2.0	96
6	Longâ€term balancing selection on chromosomal variants associated with crypsis in a stick insect. Molecular Ecology, 2017, 26, 6189-6205.	2.0	77
7	Speciation through chromosomal fusion and fission in Lepidoptera. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190539.	1.8	76
8	Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190528.	1.8	75
9	DISENTANGLING THE ROLE OF PHENOTYPIC PLASTICITY AND GENETIC DIVERGENCE IN CONTEMPORARY ECOTYPE FORMATION DURING A BIOLOGICAL INVASION. Evolution; International Journal of Organic Evolution, 2014, 68, 2619-2632.	1.1	54
10	Repeated and predictable patterns of ecotypic differentiation during a biological invasion: lake–stream divergence in parapatric ⟨scp⟩S⟨/scp⟩wiss stickleback. Journal of Evolutionary Biology, 2013, 26, 2691-2709.	0.8	50
11	Admixture between old lineages facilitated contemporary ecological speciation in Lake Constance stickleback. Nature Communications, 2019, 10, 4240.	5.8	49
12	Relaxed trait covariance in interspecific cichlid hybrids predicts morphological diversity in adaptive radiations. Journal of Evolutionary Biology, 2014, 27, 11-24.	0.8	44
13	The role of structural genomic variants in population differentiation and ecotype formation in <i>Timema cristinae</i> walking sticks. Molecular Ecology, 2019, 28, 1224-1237.	2.0	39
14	Contemporary ecotypic divergence during a recent range expansion was facilitated by adaptive introgression. Journal of Evolutionary Biology, 2014, 27, 2233-2248.	0.8	35
15	Managing cryptic biodiversity: Fineâ€scale intralacustrine speciation along a benthic gradient in Alpine whitefish (<i>Coregonus</i> spp.). Evolutionary Applications, 2017, 10, 251-266.	1.5	35
16	Evidence of Adaptive Evolutionary Divergence during Biological Invasion. PLoS ONE, 2012, 7, e49377.	1.1	33
17	Quick divergence but slow convergence during ecotype formation in lake and stream stickleback pairs of variable age. Journal of Evolutionary Biology, 2014, 27, 1878-1892.	0.8	31
18	Hybrid †superswarm†leads to rapid divergence and establishment of populations during a biological invasion. Molecular Ecology, 2015, 24, 5394-5411.	2.0	29

#	Article	IF	CITATIONS
19	Genomic landscape of early ecological speciation initiated by selection on nuptial colour. Molecular Ecology, 2017, 26, 7-24.	2.0	26
20	Distinct colonization waves underlie the diversification of the freshwater sculpin (<i>Cottus) Tj ETQq0 0 0 rgBT /</i>	Overlock	10 Jf 50 702 1
21	A holocentric twist to chromosomal speciation?. Trends in Ecology and Evolution, 2022, 37, 655-662.	4.2	23
22	Metabarcoding of honey to assess differences in plant-pollinator interactions between urban and non-urban sites. Apidologie, 2019, 50, 317-329.	0.9	19
23	Threespine Stickleback in Lake Constance: The Ecology and Genomic Substrate of a Recent Invasion. Frontiers in Ecology and Evolution, 2021, 8, .	1.1	19
24	When Phenotypes Do Not Match GenotypesUnexpected Phenotypic Diversity and Potential Environmental Constraints in Icelandic Stickleback. Journal of Heredity, 2012, 103, 579-584.	1.0	18
25	Evolutionary Mechanisms of Varying Chromosome Numbers in the Radiation of Erebia Butterflies. Genes, 2018, 9, 166.	1.0	18
26	Divergent Macroparasite Infections in Parapatric Swiss Lake-Stream Pairs of Threespine Stickleback (Gasterosteus aculeatus). PLoS ONE, 2015, 10, e0130579.	1.1	18
27	Low but contrasting neutral genetic differentiation shaped by winter temperature in European great tits. Biological Journal of the Linnean Society, 2016, 118, 668-685.	0.7	17
28	Secondary contact zones of closelyâ€related <i>Erebia</i> butterflies overlap with narrow phenotypic and parasitic clines. Journal of Evolutionary Biology, 2020, 33, 1152-1163.	0.8	17
29	Ecosystem size matters: the dimensionality of intralacustrine diversification in Icelandic stickleback is predicted by lake size. Ecology and Evolution, 2016, 6, 5256-5272.	0.8	16
30	Little evidence for a selective advantage of armour-reduced threespined stickleback individuals in an invertebrate predation experiment. Evolutionary Ecology, 2012, 26, 1293-1309.	0.5	12
31	Distinctive insular forms of threespine stickleback (Gasterosteus aculeatus) from western Mediterranean islands. Conservation Genetics, 2015, 16, 1319-1333.	0.8	12
32	Lineageâ€specific adaptation to climate involves flowering time in North American <i>Arabidopsis lyrata</i> . Molecular Ecology, 2020, 29, 1436-1451.	2.0	12
33	Drivers of linkage disequilibrium across a species' geographic range. PLoS Genetics, 2021, 17, e1009477.	1.5	12
34	Intraâ€Alpine Islands: Population genomic inference reveals high degree of isolation between freshwater spring habitats. Diversity and Distributions, 2022, 28, 291-305.	1.9	11
35	Prevalence and relationship of endosymbiotic Wolbachia in the butterfly genus Erebia. Bmc Ecology and Evolution, 2021, 21, 95.	0.7	9
36	Cryptic invasion drives phenotypic changes in central European threespine stickleback. Conservation Genetics, 2016, 17, 993-999.	0.8	8

#	Article	IF	CITATIONS
37	Effects of interspecific gene flow on the phenotypic variance–covariance matrix in Lake Victoria Cichlids. Hydrobiologia, 2017, 791, 145-154.	1.0	7
38	Recent sympatric speciation involving habitat-associated nuptial colour polymorphism in a crater lake cichlid. Hydrobiologia, 2019, 832, 297-315.	1.0	6
39	Correlating Shape Variation with Feeding Performance to Test for Adaptive Divergence in Recently Invading Stickleback Populations from Swiss peri-alpine Environments. Lecture Notes in Earth Sciences, 2010, , 233-257.	0.5	5
40	Postglacial ecotype formation under outcrossing and selfâ€fertilization in Arabidopsis lyrata. Molecular Ecology, 2019, 28, 1043-1055.	2.0	5
41	Allopatric and sympatric diversification within roach (<i>Rutilus rutilus</i>) of large preâ€alpine lakes. Journal of Evolutionary Biology, 2019, 32, 1174-1185.	0.8	4
42	Reply to "Re-evaluating the evidence for facilitation of stickleback speciation by admixture in the Lake Constance basin― Nature Communications, 2021, 12, 2807.	5.8	3
43	On the Status of Threespine Stickleback (Gasterosteus aculeatus Linnaeus 1758) in Lake Bracciano, Italy. Fishes, 2018, 3, 17.	0.7	2
44	Lack of genetic structure suggests high connectivity of Parnassius phoebus between nearby valleys in the Alps. Alpine Entomology, 0, 6, 1-6.	0.2	2
45	First record of freshwater fish on the Cape Verdean archipelago. African Zoology, 2012, 47, 341-344.	0.2	O
46	First Record of Freshwater Fish on the Cape Verdean Archipelago. African Zoology, 2012, 47, 341-344.	0.2	0
47	Lost in dead wood? Environmental DNA sequencing from dead wood shows little signs of saproxylic beetles. Environmental DNA, 0, , .	3.1	O