Miguel A Rodriguez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/347432/publications.pdf Version: 2024-02-01

		136950	206112
131	3,061	32	48
papers	citations	h-index	g-index
132	132	132	3305
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Self-Photopolymerizable Hydrogel–Ceramic Composites with Scavenger Properties. Polymers, 2022, 14, 1261.	4.5	0
2	Preparation and characterization of new tubular kaolinoâ€illitic ceramic membrane used for dairy wastewater treatment. International Journal of Applied Ceramic Technology, 2022, 19, 2114-2123.	2.1	2
3	Microstructural development and mechanical performance of CaSiO3–Ca3(PO4)2 bioceramics following the addition of CaSiO3–Ca3(PO4)2–MgCa(SiO3)2 eutectic glass. Ceramics International, 2021, 47, 5502-5509.	4.8	4
4	Calcium Phosphates in Biomedical Engineering. , 2021, , 595-600.		0
5	Bone regeneration using Wollastonite/β-TCP scaffolds implants in critical bone defect in rat calvaria. Biomedical Physics and Engineering Express, 2021, 7, 055015.	1.2	2
6	Synchrotron X-ray microdiffraction to study dental structures in Cretaceous crocodylomorphs. Cretaceous Research, 2021, 128, 104960.	1.4	3
7	Preparation and Application in Crude Oil-Water Separation of Clay-Based Membranes. Materials Research, 2021, 24, .	1.3	4
8	The preparation of meso-porous membranes from Tunisian clay. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2020, 59, 25-30.	1.9	8
9	Synthesis and in vivo evaluation of a scaffold containing wollastonite/βâ€TCP for bone repair in a rabbit tibial defect model. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 1107-1116.	3.4	21
10	Devitrification study of a novel bioactive glass designed on the CaSiO3 – Ca3(PO4)2 – MgCa(SiO3)2 system. Journal of Non-Crystalline Solids, 2020, 528, 119705.	3.1	3
11	Influence of the milling conditions on the thermal decomposition of Bayer gibbsite. Powder Technology, 2020, 362, 188-196.	4.2	13
12	Manufacturing of silicon – Bioactive glass scaffolds by selective laser melting for bone tissue engineering. Ceramics International, 2020, 46, 26936-26944.	4.8	11
13	Selective laser sintered bio-inspired silicon-wollastonite scaffolds for bone tissue engineering. Materials Science and Engineering C, 2020, 116, 111223.	7.3	40
14	Novel Osteoinductive and Osteogenic Scaffolds of Monetite, Amorphous Calcium Phosphate, Hydroxyapatite, and Silica Gel: Influence of the Hydroxyapatite/Monetite Ratio on Their <i>In Vivo</i> Behavior and on Their Physical and Chemical Properties. ACS Biomaterials Science and Engineering, 2020, 6, 3440-3453.	5.2	11
15	Mixed Matrix Membranes prepared from polysulfone and Linde Type A zeolite. Science and Engineering of Composite Materials, 2020, 27, 236-244.	1.4	15
16	Photopolymerization for filling porous ceramic matrix: Improvement of mechanical properties and drug delivering behavior. Polymer Composites, 2019, 40, 1654-1662.	4.6	2
17	Novel silicon-wollastonite based scaffolds for bone tissue engineering produced by selective laser melting. Ceramics International, 2019, 45, 24691-24701.	4.8	28
18	Obtaining hydroxyapatite with different precursors for application as a biomaterial. Ceramica, 2019, 65, 99-106.	0.8	7

#	Article	IF	CITATIONS
19	Incorporation of quartzite waste in mixtures used to prepare sanitary ware. Journal of Materials Research and Technology, 2019, 8, 2148-2156.	5.8	16
20	New cement based on calcium and strontium aluminates for endodontics. Ceramics International, 2019, 45, 19784-19792.	4.8	9
21	Bioceramic scaffolds by additive manufacturing for controlled delivery of the antibiotic vancomycin. Proceedings of the Estonian Academy of Sciences, 2019, 68, 185.	1.5	32
22	Mesoporous fibrous silicon nitride by catalytic nitridation of silicon. Progress in Natural Science: Materials International, 2019, 29, 190-197.	4.4	4
23	Combustion synthesis and characterization of Sr ₃ Al ₂ O ₆ . International Journal of Applied Ceramic Technology, 2019, 16, 595-601.	2.1	4
24	Effect of cationic surfactant HDPy+ on the acidity and hydrophilicity of Tunisian clay. Materials Chemistry and Physics, 2019, 225, 279-283.	4.0	7
25	Effects of hydrothermal pressure on in situ synthesis of 3D graphene- hydroxyapatite nano structured powders. Ceramics International, 2019, 45, 1761-1769.	4.8	32
26	In situ synthesis of three dimensional graphene-hydroxyapatite nano powders via hydrothermal process. Materials Chemistry and Physics, 2019, 222, 251-255.	4.0	31
27	Nanostructural evolution in mesoporous networks using in situ High-Speed Temperature Scanner. Ceramics International, 2018, 44, 12265-12272.	4.8	9
28	Physicochemical stability under inert and reductive atmospheres of Li 2 TiO 3 produced from Li 2 CO 3 obtained from Argentinean brines. Fusion Engineering and Design, 2018, 130, 148-154.	1.9	2
29	Combustion synthesis of MoSi2 based composite and selective laser sintering thereof. Journal of the European Ceramic Society, 2018, 38, 3814-3821.	5.7	15
30	Composite cryogels for dual drug delivery and enhanced mechanical properties. Polymer Composites, 2018, 39, E210.	4.6	17
31	Long lasting phosphors: SrAl2O4:Eu, Dy as the most studied material. Renewable and Sustainable Energy Reviews, 2018, 81, 2759-2770.	16.4	181
32	Preparation and characterization of new ceramic membranes for ultrafiltration. Ceramics International, 2018, 44, 2328-2335.	4.8	40
33	Injectable <i>β</i> -TCP/MCPM cement associated with mesoporous silica for bone regeneration: characterization and toxicity evaluation. Biomedical Materials (Bristol), 2018, 13, 025023.	3.3	7
34	Fibrous alumina-based Ni-CeO2 catalyst: Synthesis, structure and properties in propane pre-reforming. Materials Letters, 2018, 215, 35-37.	2.6	5
35	Synthesis of Wollastonite Powders by Combustion Method: Role of Amount of Fuel. International Journal of Chemical Engineering, 2018, 2018, 1-8.	2.4	9
36	The template-assisted wet-combustion synthesis of copper oxide nanoparticles on mesoporous network of alumina nanofibers. Materials Chemistry and Physics, 2017, 192, 138-146.	4.0	16

#	Article	IF	CITATIONS
37	An in vivo study on bone formation behavior of microporous granular calcium phosphate. Biomaterials Science, 2017, 5, 1315-1325.	5.4	18
38	Calcium phosphates for biomedical applications. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2017, 56, 91-112.	1.9	152
39	Processing of hydroxyapatite obtained by combustion synthesis. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2017, 56, 237-242.	1.9	39
40	Electroconductive composite of zirconia and hybrid graphene/alumina nanofibers. Journal of the European Ceramic Society, 2017, 37, 3713-3719.	5.7	17
41	Improving the pollutant removal efficiency of packed-bed plasma reactors incorporating ferroelectric components. Chemical Engineering Journal, 2017, 314, 311-319.	12.7	29
42	External and internal ontogenetic changes in the first rib. American Journal of Physical Anthropology, 2017, 164, 750-762.	2.1	9
43	Macroporous ceramic supports from natural clays. Improvement by the use of activated clays. Ceramics International, 2017, 43, 1242-1248.	4.8	13
44	Development of AlN and TiB2 Composites with Nb2O5, Y2O3 and ZrO2 as Sintering Aids. Materials, 2017, 10, 324.	2.9	4
45	A Si-αTCP Scaffold for Biomedical Applications: An Experimental Study Using the Rabbit Tibia Model. Applied Sciences (Switzerland), 2017, 7, 706.	2.5	15
46	SHS in Spain. , 2017, , 314-316.		0
47	Novel Resorbable and Osteoconductive Calcium Silicophosphate Scaffold Induced Bone Formation. Materials, 2016, 9, 785.	2.9	23
48	Bioactive composites fabricated by freezing-thawing method for bone regeneration applications. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 761-773.	2.1	20
49			
	The impact of the synthesis conditions on SrAl 2 O 4 :Eu, Dy formation for a persistent afterglow. Materials and Design, 2016, 108, 354-363.	7.0	33
50	The impact of the synthesis conditions on SrAl 2 O 4 :Eu, Dy formation for a persistent afterglow. Materials and Design, 2016, 108, 354-363. Ceramic filters for oil emulsion treatments. Desalination and Water Treatment, 2016, 57, 28071-28076.	7.0	33 1
50 51	 The impact of the synthesis conditions on SrAl 2 O 4 :Eu, Dy formation for a persistent afterglow. Materials and Design, 2016, 108, 354-363. Ceramic filters for oil emulsion treatments. Desalination and Water Treatment, 2016, 57, 28071-28076. Processing and in vitro bioactivity of a Î²-Ca3(PO4)2–CaMg(SiO3)2 ceramic with the eutectic composition. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2016, 55, 1-12. 	7.0 1.0 1.9	33 1 16
50 51 52	 The impact of the synthesis conditions on SrAl 2 O 4 :Eu, Dy formation for a persistent afterglow. Materials and Design, 2016, 108, 354-363. Ceramic filters for oil emulsion treatments. Desalination and Water Treatment, 2016, 57, 28071-28076. Processing and in vitro bioactivity of a Î²-Ca3(PO4)2–CaMg(SiO3)2 ceramic with the eutectic composition. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2016, 55, 1-12. Synthesis of LTA zeolite for bacterial adhesion. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2016, 55, 152-158. 	7.0 1.0 1.9 1.9	 33 1 16 32
50 51 52 53	 The impact of the synthesis conditions on SrAl 2 O 4 :Eu, Dy formation for a persistent afterglow. Materials and Design, 2016, 108, 354-363. Ceramic filters for oil emulsion treatments. Desalination and Water Treatment, 2016, 57, 28071-28076. Processing and in vitro bioactivity of a β-Ca3(PO4)2–CaMg(SiO3)2 ceramic with the eutectic composition. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2016, 55, 1-12. Synthesis of LTA zeolite for bacterial adhesion. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2016, 55, 152-158. Hybrid Graphene/Alumina Nanofibers for Electrodonductive Zirconia. Key Engineering Materials, 2016, 674, 15-20. 	7.0 1.0 1.9 1.9 0.4	 33 1 16 32 4

#	Article	IF	CITATIONS
55	Development of a low cost micro-porous ceramic membrane from kaolin and Alumina, using the lignite as porogen agent. Ceramics International, 2016, 42, 5089-5093.	4.8	44
56	A novel approach to electroconductive ceramics filled by graphene covered nanofibers. Materials and Design, 2016, 90, 291-298.	7.0	33
57	Investigating histomorphological variations in human cranial bones through ontogeny. Comptes Rendus - Palevol, 2016, 15, 527-535.	0.2	19
58	Preparation of macroporous membrane using natural Kaolin and Tunisian lignite as a pore-forming agent. Desalination and Water Treatment, 2016, 57, 13388-13393.	1.0	8
59	Elaboration biphasic calcium phosphate nanostructured powders. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2015, 54, 37-43.	1.9	10
60	Different in vitro behavior of two Ca3(PO4)2 based biomaterials, a glass-ceramic and a ceramic, having the same chemical composition. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2015, 54, 181-188.	1.9	9
61	Nanopatterning on highly oriented pyrolytic graphite surfaces promoted by cobalt oxides. Carbon, 2015, 85, 89-98.	10.3	8
62	Graphene-encapsulated aluminium oxide nanofibers as a novel type of nanofillers for electroconductive ceramics. Journal of the European Ceramic Society, 2015, 35, 4017-4021.	5.7	41
63	Original Synthetic Route To Obtain a SrAl ₂ O ₄ Phosphor by the Molten Salt Method: Insights into the Reaction Mechanism and Enhancement of the Persistent Luminescence. Inorganic Chemistry, 2015, 54, 9896-9907.	4.0	59
64	Plasma reforming of methane in a tunable ferroelectric packed-bed dielectric barrier discharge reactor. Journal of Power Sources, 2015, 296, 268-275.	7.8	32
65	Role of the oxidizing agent to complete the synthesis of strontium aluminate based phosphors by the combustion method. RSC Advances, 2015, 5, 3104-3112.	3.6	32
66	Designing nanostructured strontium aluminate particles with high luminescence properties. Journal of Materials Chemistry C, 2015, 3, 1268-1276.	5.5	35
67	Dipole moment-tuned packing of TiO2 nanocrystals into monolayer films by electrophoretic deposition. Applied Physics Letters, 2014, 105, .	3.3	9
68	The preparation of micro-porous membrane from a Tunisian kaolin. Applied Clay Science, 2014, 101, 574-578.	5.2	37
69	An approach to the histomorphological and histochemical variations of the humerus cortical bone through human ontogeny. Journal of Anatomy, 2014, 224, 634-646.	1.5	21
70	Functionalization of gamma-alumina nanofibers by alpha-alumina via solution combustion synthesis. Ceramics International, 2014, 40, 12603-12607.	4.8	14
71	Time-resolved powder neutron diffraction study of the phase transformation sequence of kaolinite to mullite. Journal of the European Ceramic Society, 2014, 34, 1409-1421.	5.7	61
72	Low temperature, spark plasma sintering behavior of zirconia added by a novel type of alumina nanofibers. Ceramics International, 2014, 40, 7235-7244.	4.8	4

#	Article	IF	CITATIONS
73	Non-isothermal phenomena in Mo/Si diffusion couple: Reaction kinetics and structure formation. International Journal of Self-Propagating High-Temperature Synthesis, 2013, 22, 18-26.	0.5	7
74	Influence of the pH and ageing time on the acid aluminum phosphate synthesized by precipitation. CrystEngComm, 2013, 15, 3359.	2.6	21
75	<pre><scp>Zn</scp><scp>Al</scp>₂<scp>O</scp>₄ and (0.79)<scp><scp>Zn</scp><scp>Al</scp>₂<scp>O</scp>₄</scp>alc</pre> Microwave Dielectric Ceramics Prepared by Hot Pressing and Spark Plasma Sintering. Journal of the American Ceramic Society. 2012. 95. 1023-1028.	>Mn <td>>¿sub>2</td>	>¿sub>2
76	Cordierite synthesis. A time-resolved neutron diffraction study. Journal of the European Ceramic Society, 2012, 32, 371-379.	5.7	27
77	Synthesis of amorphous acid iron phosphate nanoparticles. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	14
78	Influence of fuels and combustion aids on solution combustion synthesis of bi-phasic calcium phosphates (BCP). Materials Science and Engineering C, 2012, 32, 2464-2468.	7.3	42
79	Solution combustion synthesis and sintering behavior of CaAl2O4. Ceramics International, 2012, 38, 395-399.	4.8	35
80	Synthesis and dispersion of yttria-stabilized zirconia (YSZ) nanoparticles in supercritical water. Materials Chemistry and Physics, 2012, 134, 451-458.	4.0	9
81	SÃntesis de zeolita LTA sobre soportes de corindón: Evaluación preliminar para la eliminación de metales pesados de efluentes acuosos. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2012, 51, 249-254.	1.9	2
82	Aportaciones de la paleohistologÃa humana al estudio de biomateriales. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2012, 51, 313-320.	1.9	3
83	Study of the combining adsorption-microfiltration process for the treatment of coloured waters. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2012, 51, 165-168.	1.9	2
84	Characterization of surface and porous properties of synthetic hybrid lamellar silica. Journal of Non-Crystalline Solids, 2011, 357, 951-957.	3.1	8
85	Microstructural and mechanical evaluation of porous biomorphic silicon carbide for high temperature filtering applications. Journal of the European Ceramic Society, 2011, 31, 1325-1332.	5.7	30
86	The thermal explosion synthesis of AlNi monitored by neutron thermodiffractometry. Acta Materialia, 2010, 58, 2769-2777.	7.9	3
87	Wear-resistant ceramic and metal–ceramic ultrafine composites fabricated from combustion synthesised metastable powders. International Journal of Refractory Metals and Hard Materials, 2009, 27, 996-1003.	3.8	10
88	Synthesis, characterization, bioactivity and biocompatibility of nanostructured materials based on the wollastoniteâ€poly(ethylmethacrylateâ€ <i>co</i> â€vinylpyrrolidone) system. Journal of Biomedical Materials Research - Part A, 2009, 88A, 53-64.	4.0	30
89	Devitrification studies of wollastonite–tricalcium phosphate eutectic glass. Acta Biomaterialia, 2009, 5, 3057-3066.	8.3	34
90	Thermodynamic evaluation of the Al2O3–H2O binary system at pressures up to 30MPa. Ceramics International, 2009, 35, 3081-3090.	4.8	12

#	Article	IF	CITATIONS
91	Physical characterization of hydroxyapatite porous scaffolds for tissue engineering. Materials Science and Engineering C, 2009, 29, 1510-1514.	7.3	109
92	Energy efficiency during conventional and novel sintering processes: the case of Ti–Al2O3–TiC composites. Journal of Cleaner Production, 2009, 17, 877-882.	9.3	29
93	The wetting behaviour and reaction kinetics in diamond–silicon carbide systems. Ceramics International, 2009, 35, 2435-2441.	4.8	29
94	Solid-state 27Al and 29Si NMR characterization of hydrates formed in calcium aluminate–silica fume mixtures. Journal of Solid State Chemistry, 2008, 181, 1744-1752.	2.9	67
95	Time-resolved neutron diffraction study of Ti–TiC–Al2O3 composites obtained by SHS. Journal of the European Ceramic Society, 2008, 28, 2975-2982.	5.7	9
96	Nanostructured metastable cermets of Ti–Al2O3 through activated SHS reaction. Journal of Alloys and Compounds, 2008, 454, 352-358.	5.5	35
97	Al–Ni intermetallics obtained by SHS; A time-resolved X-ray diffraction study. Intermetallics, 2007, 15, 1163-1171.	3.9	61
98	Development of wollastonite-poly(ethylmethacrylateco-vinylpyrrolidone) based materials for multifunctional devices. Journal of Biomedical Materials Research - Part A, 2007, 81A, 603-610.	4.0	6
99	Development of a new high porosity ceramic membrane for the treatment of bilge water. Desalination, 2007, 214, 91-101.	8.2	63
100	Statistic analysis of electromechanical response in cymbal piezocomposites. Journal of the European Ceramic Society, 2007, 27, 4173-4176.	5.7	2
101	Estudio por difracción de rayos X de la hidratación de mezclas de CaAl ₂ O ₄ - Humo de silice. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2007, 46, 280-288.	1.9	4
102	Influencia de los parámetros de sÃntesis en la obtención de hidroxiapatito por el método de combustión. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2007, 46, 299-303.	1.9	3
103	Synthesis and Sintering of Si3N4Obtained by the SHS Process. Industrial & Engineering Chemistry Research, 2006, 45, 1277-1280.	3.7	5
104	Self-propagating high-temperature synthesis of TiC–WC composite materials. Journal of Alloys and Compounds, 2006, 419, 227-233.	5.5	35
105	Infiltrated glassy carbon membranes in Î ³ -Al2O3 supports. Journal of Membrane Science, 2006, 281, 500-507.	8.2	18
106	Evolución del impacto del BoletÃn de la Sociedad Española de Cerámica y Vidrio. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2006, 45, 408-412.	1.9	0
107	Preparation and characterization of tubular ceramic membranes for treatment of oil emulsions. Journal of the European Ceramic Society, 2005, 25, 1895-1903.	5.7	96
108	Synthesis of CaAl2O4 from powders: Particle size effect. Journal of the European Ceramic Society, 2005, 25, 3269-3279.	5.7	92

#	Article	IF	CITATIONS
109	Synchrotron diffraction studies of TiC/FeTi cermets obtained by SHS. Journal of Solid State Chemistry, 2005, 178, 1595-1600.	2.9	16
110	Preparation of multilayer ceramic systems for deposition of mesoporous membranes. Journal of Materials Science, 2005, 40, 6105-6112.	3.7	9
111	Time-resolved diffraction studies of the combustion synthesis of NiAl/TiC composite. Acta Crystallographica Section A: Foundations and Advances, 2005, 61, c72-c73.	0.3	0
112	Análisis de la distribución temática en el BoletÃn de la Sociedad Española de Cerámica y Vidrio. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2005, 44, 427-434.	1.9	2
113	Synthesis of Î ² -Silicon nitride by SHS: fiber growth. Scripta Materialia, 2004, 50, 383-386.	5.2	46
114	In situ accelerated leaching of cement paste by application of electrical fields monitored by synchrotron X-ray diffraction. Applied Physics A: Materials Science and Processing, 2004, 79, 661-669.	2.3	5
115	Time-resolved XRD study of TiC–TiB2 composites obtained by SHS. Acta Materialia, 2004, 52, 4783-4790.	7.9	54
116	Membranas cerámicas. Tipos, métodos de obtención y caracterización. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2004, 43, 829-842.	1.9	12
117	Structural evolution of lamellar surfactant–silica hybrids upon calcination. Composites Science and Technology, 2003, 63, 1127-1131.	7.8	7
118	New spinel-containing refractory cements. Journal of the European Ceramic Society, 2003, 23, 737-744.	5.7	38
119	Obtención de Si ₃ N ₄ mediante SHS. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2003, 42, 89-92.	1.9	3
120	TiC–NiAl composites obtained by SHS: a time-resolved XRD study. Journal of the European Ceramic Society, 2002, 22, 1039-1044.	5.7	39
121	Effect of Dilution and Porosity on Self-Propagating High-Temperature Synthesis of Silicon Nitride. Journal of the American Ceramic Society, 2002, 85, 2209-2211.	3.8	38
122	Synthesis of nanocrystalline yttrium disilicate powder by a sol–gel method. Journal of Non-Crystalline Solids, 2001, 289, 151-154.	3.1	40
123	Self-propagating high temperature-synthesis of Si3N4: role of ammonium salt addition. Journal of the European Ceramic Society, 2001, 21, 291-295.	5.7	59
124	Reaction sintering of zircon–dolomite mixtures. Journal of the European Ceramic Society, 2001, 21, 343-354.	5.7	46
125	Separation of binary gas mixtures by means of sol–gel modified ceramic membranes. Prediction of membrane performance. Journal of Membrane Science, 1999, 155, 123-131.	8.2	23
126	Single crystal β-SiAlON fibers obtained by self-propagating high-temperature synthesisâ^—â^—. Scripta Materialia, 1997, 37, 405-410.	5.2	22

#	Article	IF	CITATIONS
127	Single crystal AlN fibers obtained by self-propagating high-temperature synthesis (SHS). Acta Materialia, 1997, 45, 3089-3094.	7.9	33
128	Self-reinforced Si3N4 ceramics fabricated using Si3N4 produced by self-propagating high temperature synthesis. Scripta Materialia, 1996, 35, 991-997.	5.2	2
129	Single crystal ß-Si3N4 fibers obtained by self-propagating high temperature synthesis. Advanced Materials, 1995, 7, 745-747.	21.0	67
130	Effect of Y2O3 and MgO contaminants introduced by Y-TZP and Mg-PSZ milling balls on the sintering of Al2O3 powders. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1989, 109, 101-104.	5.6	1
131	Processing of ZrC-TiC Composites by SPS. Key Engineering Materials, 0, 674, 94-99.	0.4	9