Peter G Ott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3474105/publications.pdf Version: 2024-02-01

Ρετέρ C. Οττ

#	Article	IF	CITATIONS
1	Bio-based resistance inducers for sustainable plant protection against pathogens. Biotechnology Advances, 2015, 33, 994-1004.	11.7	196
2	Transcriptome of silicon-induced resistance against Ralstonia solanacearum in the silicon non-accumulator tomato implicates priming effect. Physiological and Molecular Plant Pathology, 2011, 75, 83-89.	2.5	168
3	Tracking and identification of antibacterial components in the essential oil of Tanacetum vulgare L. by the combination of high-performance thin-layer chromatography with direct bioautography and mass spectrometry. Journal of Chromatography A, 2015, 1422, 310-317.	3.7	58
4	Effect-Directed Discovery of Bioactive Compounds Followed by Highly Targeted Characterization, Isolation and Identification, Exemplarily Shown for <i>Solidago virgaurea</i> . Analytical Chemistry, 2016, 88, 8202-8209.	6.5	50
5	Characterization of Volatile Constituents from Origanum onites and Their Antifungal and Antibacterial Activity. Journal of AOAC INTERNATIONAL, 2013, 96, 1200-1208.	1.5	49
6	Effect-directed analysis via hyphenated high-performance thin-layer chromatography for bioanalytical profiling of sunflower leaves. Journal of Chromatography A, 2018, 1533, 213-220.	3.7	35
7	Separation and Identification of Antibacterial Chamomile Components Using OPLC, Bioautography and GC-MS. Medicinal Chemistry, 2012, 8, 85-94.	1.5	33
8	TLC-Direct Bioautography and LC/MS as Complementary Methods in Identification of Antibacterial Agents in Plant Tinctures from the <i>Asteraceae</i> Family. Journal of AOAC INTERNATIONAL, 2015, 98, 857-861.	1.5	32
9	Local early induced resistance of plants as the first line of defence against bacteria. Pest Management Science, 2003, 59, 465-474.	3.4	31
10	Distinction and valorization of 30 root extracts of five goldenrod (Solidago) species. Journal of Chromatography A, 2020, 1611, 460602.	3.7	31
11	Antibacterial potential of the Cistus incanus L. phenolics as studied with use of thin-layer chromatography combined with direct bioautography and in situ hydrolysis. Journal of Chromatography A, 2018, 1534, 170-178.	3.7	29
12	Silicon and Ralstonia solanacearum modulate expression stability of housekeeping genes in tomato. Physiological and Molecular Plant Pathology, 2011, 75, 176-179.	2.5	28
13	Bioassay-Guided Isolation and Identification of Antimicrobial Compounds from Thyme Essential Oil by Means of Overpressured Layer Chromatography, Bioautography and GC–MS. Chromatographia, 2012, 75, 991-999.	1.3	26
14	TLC-Direct Bioautography as a Bioassay Guided Method for Investigation of Antibacterial Compounds in Hypericum perforatum L Journal of AOAC INTERNATIONAL, 2015, 98, 1013-1020.	1.5	25
15	Discovered acetylcholinesterase inhibition and antibacterial activity of polyacetylenes in tansy root extract via effect-directed chromatographic fingerprints. Journal of Chromatography A, 2018, 1543, 73-80.	3.7	25
16	Comparison of high-performance thin-layer with overpressured layer chromatography combined with direct bioautography and direct analysis in real time mass spectrometry for tansy root. Journal of Chromatography A, 2019, 1603, 355-360.	3.7	24
17	Layer chromatography-bioassays directed screening and identification of antibacterial compounds from Scotch thistle. Journal of Chromatography A, 2017, 1524, 266-272.	3.7	22
18	High-performance thin-layer chromatography hyphenated to high-performance liquid chromatography-diode array detection-mass spectrometry for characterization of coeluting isomers. Talanta, 2020, 219, 121306.	5.5	21

Peter G Ott

#	Article	IF	CITATIONS
19	Novel Extracellular Chitinases Rapidly and Specifically Induced by General Bacterial Elicitors and Suppressed by Virulent Bacteria as a Marker of Early Basal Resistance in Tobacco. Molecular Plant-Microbe Interactions, 2006, 19, 161-172.	2.6	20
20	Characterisation of basal resistance (BR) by expression patterns of newly isolated representative genes in tobacco. Plant Cell Reports, 2006, 25, 728-740.	5.6	20
21	Transcriptome analysis of a bacterially induced basal and hypersensitive response of Medicago truncatula. Plant Molecular Biology, 2009, 70, 627-646.	3.9	19
22	Applicability of Preparative Overpressured Layer Chromatography and Direct Bioautography in Search of Antibacterial Chamomile Compounds. Journal of AOAC INTERNATIONAL, 2013, 96, 1214-1221.	1.5	19
23	Overlapping Yet Response-Specific Transcriptome Alterations Characterize the Nature of Tobacco–Pseudomonas syringae Interactions. Frontiers in Plant Science, 2016, 7, 251.	3.6	19
24	Comparison of Components from Red and White Wines for Antimicrobial Activity by Biodetection after OPLC Separation. Journal of Liquid Chromatography and Related Technologies, 2009, 32, 1259-1272.	1.0	16
25	Bioactive clerodane diterpenes of giant goldenrod (Solidago gigantea Ait.) root extract. Journal of Chromatography A, 2021, 1635, 461727.	3.7	16
26	Pattern Triggered Immunity (PTI) in Tobacco: Isolation of Activated Genes Suggests Role of the Phenylpropanoid Pathway in Inhibition of Bacterial Pathogens. PLoS ONE, 2014, 9, e102869.	2.5	15
27	Potential role of formaldehyde in the mechanism of action of ascorbigens on the basis of BioArena studies. Biomedical Chromatography, 2009, 23, 412-418.	1.7	14
28	Thin-layer chromatographic quantification of magnolol and honokiol in dietary supplements and selected biological properties of these preparations. Journal of Chromatography A, 2020, 1625, 461230.	3.7	13
29	Goldenrod Root Compounds Active against Crop Pathogenic Fungi. Journal of Agricultural and Food Chemistry, 2021, 69, 12686-12694.	5.2	13
30	BioArena Studies: Unique Function of Endogenous Formaldehyde and Ozone in the Antibiotic Effect – A Review. Medicinal Chemistry, 2012, 8, 75-84.	1.5	12
31	Direct Bioautography as a High-Throughput Screening Method for the Detection of Antibacterial Components from Plant Sources. Journal of AOAC INTERNATIONAL, 2015, 98, 850-856.	1.5	12
32	Antibacterial potential of the phenolics extracted from the <i>Paulownia tomentosa</i> L. leaves as studied with use of high-performance thin-layer chromatography combined with direct bioautography. Journal of Liquid Chromatography and Related Technologies, 2019, 42, 282-289.	1.0	11
33	BioArena System for Knowing and Understanding the Biological World: A Review with New Experimental Results. Journal of AOAC INTERNATIONAL, 2013, 96, 1189-1199.	1.5	10
34	Separation and detection of bioactive essential oil components by overpressured layer chromatography coupled with bioactivity tests. Journal of Planar Chromatography - Modern TLC, 2017, 30, 121-125.	1.2	7
35	Acetylcholinesterase inhibitors in the giant goldenrod root. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2021, 1185, 123004.	2.3	7
36	High-performance thin-layer chromatography – antibacterial assay first reveals bioactive clerodane diterpenes in giant goldenrod (Solidago gigantea Ait.). Journal of Chromatography A, 2022, 1677, 463308.	3.7	7

Peter G Ott

#	Article	IF	CITATIONS
37	Biological Characterization of Ingredients in OPLC-BioArena-Greenhouse-System: Unique Reactions of Endogenous HCHO and O3 in In Vitro and In Vivo Conditions. Chromatographia, 2012, 75, 983-990.	1.3	6
38	Detection and Identification of Antibacterial and Antioxidant Components of Essential Oils by TLC-Biodetection and GC-MS. Natural Product Communications, 2016, 11, 1934578X1601101.	0.5	6
39	Bioassay-guided detection and identification of an antibacterial compound from greater burdock. Journal of Planar Chromatography - Modern TLC, 2018, 31, 87-91.	1.2	5
40	Separation and detection of apricot leaf triterpenes by high-performance thin-layer chromatography combined with direct bioautography and mass spectrometry. Journal of Chromatography A, 2022, 1675, 463167.	3.7	5
41	Rapid, Bioassay-Guided Process for the Detection and Identification of Antibacterial Neem Oil Compounds. Journal of Chromatographic Science, 2016, 54, 1084-1089.	1.4	4
42	Investigation of antibacterial and cytotoxic potential of phenolics derived from <i>Cistus incanus</i> L. by means of thin-layer chromatography-direct bioautography and cytotoxicity assay. Journal of Liquid Chromatography and Related Technologies, 2018, 41, 349-357.	1.0	4
43	Hr-Positive Phenotype of the Pseudomonas syringae pv. syringae hrpK Mutant and hrp Gene Superinduction in Tobacco Leaves Treated with Protein Synthesis Inhibitors. Developments in Plant Pathology, 1997, , 122-126.	0.1	3
44	The Mechanism of Symptomless Reaction of Plants Induced by Pathogenic Pseudomonads. Developments in Plant Pathology, 1997, , 127-132.	0.1	2
45	Enzymic Methylation of Ascorbigen and Demethylation of Its N-Methyl Derivative by Pseudomonas savastanoi pv. phaseolicola Bacteria. Chromatographia, 2012, 75, 1001-1007.	1.3	1
46	STUDY OF TRACE ELEMENTS IN BIOARENA SYSTEM AND IN IN VIVO CONDITIONS. Journal of Liquid Chromatography and Related Technologies, 2014, 37, 2857-2871.	1.0	1