Murat Inalpolat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3474056/publications.pdf

Version: 2024-02-01

1040056 794594 20 539 9 19 citations h-index g-index papers 21 21 21 449 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	An unsupervised data-driven approach for wind turbine blade damage detection under passive acoustics-based excitation. Wind Engineering, 2022, 46, 1311-1330.	1.9	3
2	Response Sensitivity of Centrifugal Pendulum Vibration Absorbers to Symmetry-Breaking Absorber Imperfections. Journal of Sound and Vibration, 2022, 535, 117037.	3.9	4
3	Combat helmet liner design for blunt impact absorption using multi-output Gaussian process surrogates. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, 235, 2934-2951.	2.1	2
4	Pressure monitoring based identification of the EOD suit–human interface load distribution. International Journal of Intelligent Robotics and Applications, 2021, 5, 410-423.	2.8	2
5	Active acoustic damage detection of structural cavities using internal acoustic excitations. Structural Health Monitoring, 2020, 19, 48-65.	7.5	15
6	Passive acoustic damage detection of structural cavities using flow-induced acoustic excitations. Structural Health Monitoring, 2020, 19, 751-764.	7.5	10
7	An experimental investigation into passive acoustic damage detection for structural health monitoring of wind turbine blades. Structural Health Monitoring, 2020, 19, 1711-1725.	7.5	44
8	A computational investigation of airfoil aeroacoustics for structural health monitoring of wind turbine blades. Wind Energy, 2020, 23, 795-809.	4.2	15
9	Acoustic Sensing Based Operational Monitoring of Wind Turbine Blades. Journal of Physics: Conference Series, 2020, 1452, 012050.	0.4	5
10	An adaptive wavelet packet denoising algorithm for enhanced active acoustic damage detection from wind turbine blades. Mechanical Systems and Signal Processing, 2020, 142, 106754.	8.0	72
11	Inductive quantification of energy absorption of high-density polyethylene foam for repeated blunt impact. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2020, 234, 531-545.	1.1	6
12	Effect of wetting states on frequency response of a micropillar-based quartz crystal microbalance. Sensors and Actuators A: Physical, 2019, 286, 115-122.	4.1	17
13	A Computational Investigation Into the Impact of Sensor Location on the Acoustics-Based Damage Detection From an Airfoil Structure. , 2019, , .		3
14	Outcomes of a Cross-Disciplinary Concussion Prevention and Diagnosis Workshop Series. Proceedings (mdpi), 2018, 2, 268.	0.2	1
15	Wind Turbine Blade Damage Detection Using Supervised Machine Learning Algorithms. Journal of Vibration and Acoustics, Transactions of the ASME, 2017, 139, .	1.6	49
16	Structural health monitoring of wind turbine blades using acoustic microphone array. Structural Health Monitoring, 2017, 16, 471-485.	7.5	37
17	Amplitude modulations in planetary gears. Wind Energy, 2014, 17, 505-517.	4.2	15
18	A dynamic model to predict modulation sidebands of a planetary gear set having manufacturing errors. Journal of Sound and Vibration, 2010, 329, 371-393.	3.9	226

#	Article	IF	CITATIONS
19	Analysis of near field sound radiation from a resonant unbaffled plate using simplified analytical models. Noise Control Engineering Journal, 2010, 58, 145.	0.3	9
20	A generalized computational approach to predict high-frequency acoustic pressure response of cavity structures for structural health monitoring of wind turbine blades. Wind Engineering, 0, , 0309524×2110605 .	1.9	2