Xu Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3473903/publications.pdf

Version: 2024-02-01

623734 454955 1,253 31 14 30 citations h-index g-index papers 33 33 33 2086 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Epitaxial Growth and Airâ€6tability of Monolayer Antimonene on PdTe ₂ . Advanced Materials, 2017, 29, 1605407.	21.0	313
2	Epitaxial Growth of Flat Antimonene Monolayer: A New Honeycomb Analogue of Graphene. Nano Letters, 2018, 18, 2133-2139.	9.1	219
3	Intrinsically patterned two-dimensional materials for selective adsorption of molecules andÂnanoclusters. Nature Materials, 2017, 16, 717-721.	27.5	150
4	Epitaxially grown monolayer VSe 2: an air-stable magnetic two-dimensional material with low work function at edges. Science Bulletin, 2018, 63, 419-425.	9.0	92
5	Imaging single glycans. Nature, 2020, 582, 375-378.	27.8	72
6	Kondo Effect of Cobalt Adatoms on a Graphene Monolayer Controlled by Substrate-Induced Ripples. Nano Letters, 2014, 14, 4011-4015.	9.1	60
7	Direct identification of Mott Hubbard band pattern beyond charge density wave superlattice in monolayer 1T-NbSe2. Nature Communications, 2021, 12, 1978.	12.8	45
8	Spontaneous Formation of 1D Pattern in Monolayer VSe ₂ with Dispersive Adsorption of Pt Atoms for HER Catalysis. Nano Letters, 2019, 19, 4897-4903.	9.1	42
9	Epitaxial fabrication of two-dimensional NiSe2 on Ni(111) substrate. Applied Physics Letters, 2017, 111, .	3.3	29
10	O2phole-assisted electronic processes in thePr1â^'xSrxMnO3(x=0.0, 0.3) system. Physical Review B, 2004, 70, .	3.2	26
11	Spontaneous Formation of a Superconductor–Topological Insulator–Normal Metal Layered Heterostructure. Advanced Materials, 2016, 28, 5013-5017.	21.0	24
12	Interatomic Spin Coupling in Manganese Clusters Registered on Graphene. Physical Review Letters, 2017, 119, 176806.	7.8	20
13	Theoretical calculations of the high-pressure phases of ZnF2 and CdF2. European Physical Journal B, 2006, 50, 521-526.	1.5	19
14	Bulk GaN single crystals: growth mechanism by using Li3N and Ga. Applied Physics A: Materials Science and Processing, 2004, 78, 29-31.	2.3	17
15	Visualizing Spatial Evolution of Electron-Correlated Interface in Two-Dimensional Heterostructures. ACS Nano, 2021, 15, 16589-16596.	14.6	15
16	Electrochemically etched Ni tips in a constant-current mode for spin-polarized scanning tunneling microscopy. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, .	1.2	13
17	Visualization of Charge-Density-Wave Reconstruction and Electronic Superstructure at the Edge of Correlated Insulator 1T-NbSe ₂ . ACS Nano, 2022, 16, 1332-1338.	14.6	13
18	Permeation through graphene ripples. 2D Materials, 2017, 4, 025010.	4.4	12

#	Article	IF	CITATIONS
19	Back contact modification of the optoelectronic device with transition metal dichalcogenide VSe2 film drives solar cell efficiency. Journal of Materiomics, 2021, 7, 470-477.	5 . 7	10
20	Tunable Electronic Structures in Wrinkled 2D Transitionâ€Metalâ€Trichalcogenide (TMT) HfTe ₃ Films. Advanced Electronic Materials, 2016, 2, 1600324.	5.1	9
21	Shallowing interfacial carrier trap in transition metal dichalcogenide heterostructures with interlayer hybridization. Nano Research, 2021, 14, 1390-1396.	10.4	9
22	Line defects in monolayer TiSe2 with adsorption of Pt atoms potentially enable excellent catalytic activity. Nano Research, 2022, 15, 4687-4692.	10.4	9
23	Oxygen Promotes the Formation of MoSe ₂ at the Interface of Cu ₂ ZnSnSe ₄ /Mo. Journal of Physical Chemistry Letters, 2021, 12, 4447-4452.	4.6	8
24	Lateral manipulation and interplay of local Kondo resonances in a two-impurity Kondo system. Applied Physics Letters, 2015, 107, 071604.	3.3	6
25	Title is missing!. Journal of Materials Science Letters, 1997, 16, 617-618.	0.5	5
26	Using graphene to suppress the selenization of Pt for controllable fabrication of monolayer PtSe2. Nano Research, 2020, 13, 3212-3216.	10.4	4
27	Charge density wave states in phase-engineered monolayer VTe ₂ . Chinese Physics B, 2022, 31, 077101.	1.4	4
28	Erasure of photorefractive gratings in barium titanate. Journal of Applied Physics, 1994, 76, 7541-7544.	2.5	3
29	Photorefractive parameters and light-induced absorption in BaTiO3. Applied Physics A: Materials Science and Processing, 1995, 61, 553-557.	2.3	3
30	Moir \tilde{A} © Pattern Dislocation in Continuous Atomic Lattice of Monolayer h-BN. ACS Applied Electronic Materials, 0, , .	4.3	1
31	Preparation and characterization of Ca:YVO4 single crystal. Journal of Materials Science Letters, 2003, 22, 157-158.	0.5	0