
Hugo Vankelecom

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3473614/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transnasal transsphenoidal pituitary surgery in a large tertiary hospital, a retrospective study. Acta Chirurgica Belgica, 2023, 123, 272-280.	0.4	1
2	Human blastoids model blastocyst development and implantation. Nature, 2022, 601, 600-605.	27.8	220
3	Organoids from human tooth showing epithelial stemness phenotype and differentiation potential. Cellular and Molecular Life Sciences, 2022, 79, 153.	5.4	12
4	Development of Organoids from Mouse Pituitary as In Vitro Model to Explore Pituitary Stem Cell Biology. Journal of Visualized Experiments, 2022, , .	0.3	6
5	Endometriosis Organoids: Prospects and Challenges. Reproductive BioMedicine Online, 2022, , .	2.4	1
6	Establishing Organoids from Human Tooth as a Powerful Tool toward Mechanistic Research and Regenerative Therapy. Journal of Visualized Experiments, 2022, , .	0.3	1
7	The human pituitary master gland stripped to single-cell resolution. Nature Reviews Endocrinology, 2022, 18, 395-396.	9.6	1
8	Modeling Endometrium Biology and Disease. Journal of Personalized Medicine, 2022, 12, 1048.	2.5	9
9	Pituitary disease and recovery: How are stem cells involved?. Molecular and Cellular Endocrinology, 2021, 525, 111176.	3.2	2
10	Organoids of the Female Reproductive Tract: Innovative Tools to Study Desired to Unwelcome Processes. Frontiers in Cell and Developmental Biology, 2021, 9, 661472.	3.7	15
11	Protocol for establishing organoids from human ovarian cancer biopsies. STAR Protocols, 2021, 2, 100429.	1.2	10
12	Interleukin-6 is an activator of pituitary stem cells upon local damage, a competence quenched in the aging gland. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	25
13	In vitro modelling of the physiological and diseased female reproductive system. Acta Biomaterialia, 2021, 132, 288-312.	8.3	12
14	Intertwined Signaling Pathways Governing Tooth Development: A Give-and-Take Between Canonical Wnt and Shh. Frontiers in Cell and Developmental Biology, 2021, 9, 758203.	3.7	24
15	Murine Endometrial Organoids to Model Chlamydia Infection. Frontiers in Cellular and Infection Microbiology, 2020, 10, 416.	3.9	22
16	Organoids can be established reliably from cryopreserved biopsy catheter-derived endometrial tissue of infertile women. Reproductive BioMedicine Online, 2020, 41, 465-473.	2.4	16
17	Developing Organoids from Ovarian Cancer as Experimental and Preclinical Models. Stem Cell Reports, 2020, 14, 717-729.	4.8	105
18	Pituitary Remodeling Throughout Life: Are Resident Stem Cells Involved?. Frontiers in Endocrinology, 2020, 11, 604519.	3.5	20

HUGO VANKELECOM

#	Article	IF	CITATIONS
19	Inhibition of Notch signaling attenuates pituitary adenoma growth in Nude mice. Endocrine-Related Cancer, 2019, 26, 13-29.	3.1	15
20	Patient-derived organoids from endometrial disease capture clinical heterogeneity and are amenable to drug screening. Nature Cell Biology, 2019, 21, 1041-1051.	10.3	281
21	Traumatic brain injury and resultant pituitary dysfunction: insights from experimental animal models. Pituitary, 2019, 22, 212-219.	2.9	9
22	Functional expression of the mechanosensitive PIEZO1 channel in primary endometrial epithelial cells and endometrial organoids. Scientific Reports, 2019, 9, 1779.	3.3	36
23	Organoids from pituitary as a novel research model toward pituitary stem cell exploration. Journal of Endocrinology, 2019, 240, 287-308.	2.6	39
24	Development of organoids from mouse and human endometrium showing endometrial epithelium physiology and long-term expandability. Development (Cambridge), 2017, 144, 1775-1786.	2.5	228
25	Pituitary stem cell regulation: who is pulling the strings?. Journal of Endocrinology, 2017, 234, R135-R158.	2.6	25
26	An autophagy-driven pathway of ATP secretion supports the aggressive phenotype of BRAF ^{V600E} inhibitor-resistant metastatic melanoma cells. Autophagy, 2017, 13, 1512-1527.	9.1	70
27	Major depletion of SOX2+ stem cells in the adult pituitary is not restored which does not affect hormonal cell homeostasis and remodelling. Scientific Reports, 2017, 7, 16940.	3.3	18
28	The Stem Cell Connection of Pituitary Tumors. Frontiers in Endocrinology, 2017, 8, 339.	3.5	17
29	Notch system is differentially expressed and activated in pituitary adenomas of distinct histotype, tumor cell lines and normal pituitaries. Oncotarget, 2017, 8, 57072-57088.	1.8	16
30	Regeneration in the Pituitary After Cell-Ablation Injury: Time-Related Aspects and Molecular Analysis. Endocrinology, 2016, 157, 705-721.	2.8	37
31	Pituitary Stem Cells: Quest for Hidden Functions. Research and Perspectives in Endocrine Interactions, 2016, , 81-101.	0.2	8
32	Pituitary tumors contain a side population with tumor stem cell-associated characteristics. Endocrine-Related Cancer, 2015, 22, 481-504.	3.1	70
33	Pituitary stem cells: Where do we stand?. Molecular and Cellular Endocrinology, 2014, 385, 2-17.	3.2	71
34	Pituitary cell differentiation from stem cells and other cells: toward restorative therapy for hypopituitarism?. Regenerative Medicine, 2014, 9, 513-534.	1.7	16
35	The Human Melanoma Side Population Displays Molecular and Functional Characteristics of Enriched Chemoresistance and Tumorigenesis. PLoS ONE, 2013, 8, e76550.	2.5	43
36	The Adult Pituitary Shows Stem/Progenitor Cell Activation in Response to Injury and Is Capable of Regeneration. Endocrinology, 2012, 153, 3224-3235.	2.8	87

HUGO VANKELECOM

#	Article	IF	CITATIONS
37	Regenerative Capacity of the Adult Pituitary: Multiple Mechanisms of Lactotrope Restoration After Transgenic Ablation. Stem Cells and Development, 2012, 21, 3245-3257.	2.1	52
38	Activated Phenotype of the Pituitary Stem/Progenitor Cell Compartment During the Early-Postnatal Maturation Phase of the Gland. Stem Cells and Development, 2012, 21, 801-813.	2.1	87
39	Pituitary Stem Cells Drop Their Mask. Current Stem Cell Research and Therapy, 2012, 7, 36-71.	1.3	23
40	Gene expression changes in melanoma metastases in response to highâ€dose chemotherapy during isolated limb perfusion. Pigment Cell and Melanoma Research, 2012, 25, 454-465.	3.3	13
41	Stem cells in the pituitary gland: A burgeoning field. General and Comparative Endocrinology, 2010, 166, 478-488.	1.8	67
42	Pituitary stem /progenitor cells: embryonic players in the adult gland?. European Journal of Neuroscience, 2010, 32, 2063-2081.	2.6	65
43	Cancer stem cells in cutaneous melanoma. Expert Review of Dermatology, 2009, 4, 225-235.	0.3	8
44	Pituitary Progenitor Cells Tracked Down by Side Population Dissection. Stem Cells, 2009, 27, 1182-1195.	3.2	138
45	Role of cancer stem cells in pancreatic ductal adenocarcinoma. Nature Reviews Clinical Oncology, 2009, 6, 580-586.	27.6	68
46	Non-hormonal cell types in the pituitary candidating for stem cell. Seminars in Cell and Developmental Biology, 2007, 18, 559-570.	5.0	54
47	Stem Cells in the Postnatal Pituitary?. Neuroendocrinology, 2007, 85, 110-130.	2.5	55
48	The Notch Signaling System Is Present in the Postnatal Pituitary: Marked Expression and Regulatory Activity in the Newly Discovered Side Population. Molecular Endocrinology, 2006, 20, 3293-3307.	3.7	80
49	Nestin-Immunoreactive Cells in Rat Pituitary Are neither Hormonal nor Typical Folliculo-Stellate Cells. Endocrinology, 2005, 146, 2376-2387.	2.8	86
50	The Adult Pituitary Contains a Cell Population Displaying Stem/Progenitor Cell and Early Embryonic Characteristics. Endocrinology, 2005, 146, 3985-3998.	2.8	228
51	History and perspectives of pituitary folliculo-stellate cell research. European Journal of Endocrinology, 2005, 153, 1-12.	3.7	197
52	Targeted ablation of gonadotrophs in transgenic mice depresses prolactin but not growth hormone gene expression at birth as measured by quantitative mRNA detection. Journal of Biomedical Science, 2003, 10, 805-812.	7.0	10
53	Targeted Ablation of Gonadotrophs in Transgenic Mice Depresses Prolactin but Not Growth Hormone Gene Expression at Birth as Measured by Quantitative mRNA Detection. Journal of Biomedical Science, 2003, 10, 805-812.	7.0	6
54	Paracrine communication in the anterior pituitary as studied in reaggregate cell cultures. Microscopy Research and Technique, 1997, 39, 150-156.	2.2	36

HUGO VANKELECOM

#	Article	IF	CITATIONS
55	Interferon- Î ³ in neuroimmunology and endocrinology. Advances in Neuroimmunology, 1992, 2, 139-161.	1.8	7
56	Interferon-7 Inhibits Stimulated Adrenocorticotropin, Prolactin, and Growth Hormone Secretion in Normal Rat Anterior Pituitary Cell Cultures*. Endocrinology, 1990, 126, 2919-2926.	2.8	97
57	Production of Interleukin-6 by Folliculo-Stellate Cells of the Anterior Pituitary Gland in a Histiotypic Cell Aggregate Culture System. Neuroendocrinology, 1989, 49, 102-106.	2.5	276
58	Decoding the activated stem cell phenotype of the neonatally maturing pituitary. ELife, 0, 11, .	6.0	10