List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3473569/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Infrared absorption cross sections, and oscillator strengths of interstitial and substitutional double donors in silicon. Physical Review Materials, 2021, 5, .	2.4	6
2	Investigation of the Magnesium Impurity in Silicon. Semiconductors, 2020, 54, 393-398.	0.5	7
3	Higher-order Zeeman effect of Mg-related donor complexes in silicon. Physical Review B, 2020, 102, .	3.2	3
4	Features of Photothermal Ionization in Photoconducting Spectra of Mid-Infrared Silicon Detectors Doped by Deep Selenium Double Donors. , 2020, , .		0
5	Detection of Sulfurâ€Related Defects in Sulfur Diffused n―and pâ€Type Si by DLTS. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900303.	1.8	2
6	Chemical Shift and Exchange Interaction Energy of the 1s States of Magnesium Donors in Silicon. The Possibility of Stimulated Emission. Semiconductors, 2019, 53, 1234-1237.	0.5	7
7	Shallow donor complexes formed by pairing of double-donor magnesium with group-III acceptors in silicon. Physical Review B, 2019, 99, .	3.2	9
8	DLTS Investigation of the Energy Spectrum of Si:Mg Crystals. Semiconductors, 2019, 53, 789-794.	0.5	1
9	Decomposition of a Solid Solution of Interstitial Magnesium in Silicon. Semiconductors, 2019, 53, 296-297.	0.5	3
10	Study of GaAs oxidation in the low-current Townsend discharge. Journal of Physics: Conference Series, 2019, 1400, 055042.	0.4	0
11	Townsend discharge in argon and nitrogen: Study of the electron distribution function. Journal of Applied Physics, 2019, 126, .	2.5	4
12	Evenâ€Parity Excited States in Infrared Emission, Absorption, and Raman Scattering Spectra of Shallow Donor Centers in Silicon. Physica Status Solidi (B): Basic Research, 2019, 256, 1800514.	1.5	4
13	Mg-pair isoelectronic bound exciton identified by its isotopic fingerprint in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mmultiscripts><mml:mi>Si</mml:mi><mml:mprescri /><mml:none></mml:none><mml:mn>28</mml:mn></mml:mprescri </mml:mmultiscripts>. Physical Review B, 2018, 98, .</mml:math 	ipt.2	6
14	GaAs oxidation with Townsend-discharge three-electrode microreactor. Journal of Applied Physics, 2018, 124, .	2.5	4
15	Further investigations of the deep double donor magnesium in silicon. Physical Review B, 2018, 98, .	3.2	11
16	Radii of Rydberg states of isolated silicon donors. Physical Review B, 2018, 98, .	3.2	12
17	Diffusion doping of silicon with magnesium. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700192.	1.8	17
18	Comparative study of noise in low-current Townsend discharge in nitrogen and argon. Physical Review E, 2017, 95, 043206.	2.1	8

#	Article	IF	CITATIONS
19	Diffusion of interstitial magnesium in dislocation-free silicon. Semiconductors, 2017, 51, 1-3.	0.5	13
20	High-temperature diffusion of magnesium in dislocation-free silicon. Semiconductors, 2017, 51, 1031-1033.	0.5	11
21	Mid-infrared spectroscopy of sulphur and selenium donors in silicon for quantum optics. , 2016, , .		Ο
22	Dynamics of nonequilibrium electrons on neutral center states of interstitial magnesium donors in silicon. Physical Review B, 2016, 94, .	3.2	9
23	Townsend discharge in nitrogen at low temperatures: enhanced noise and instability due to electrode phenomena. Journal Physics D: Applied Physics, 2016, 49, 095202.	2.8	6
24	Self-organized patterns in successive bifurcations in planar semiconductor-gas-discharge device. Physical Review E, 2015, 91, 032909.	2.1	7
25	Formation of S2 "quasi-molecules―in sulfur-doped silicon. Semiconductors, 2015, 49, 421-422.	0.5	1
26	Dynamics of the Townsend discharge in argon. Technical Physics, 2015, 60, 660-664.	0.7	2
27	Infrared Single Photon Centers in Chalcogen Doped Silicon for Quantum Computing. , 2014, , .		0
28	High-field impurity magneto-optics of Si:Se. Physical Review B, 2014, 90, .	3.2	5
29	Dynamics and stability of the Townsend discharge in nitrogen in narrow gaps. Physical Review E, 2014, 89, 033109.	2.1	12
30	Doping of silicon with selenium by diffusion from the gas phase. Semiconductors, 2014, 48, 413-416.	0.5	8
31	Silicon with an increased content of monoatomic sulfur centers: Sample fabrication and optical spectroscopy. Semiconductors, 2013, 47, 247-251.	0.5	12
32	DC Townsend Discharge in Nitrogen: Temperatureâ€Đependent Phenomena. Contributions To Plasma Physics, 2012, 52, 682-691.	1.1	3
33	Solubility of sulfur in silicon. Semiconductors, 2012, 46, 969-970.	0.5	3
34	Hexagonal structures of current in a "semiconductor-gas-discharge gap―system. Technical Physics, 2011, 56, 197-203.	0.7	7
35	Gas-phase doping of silicon with sulfur. Semiconductor Science and Technology, 2011, 26, 055021.	2.0	18
36	Polymorphism of condensed phase of dissipative solitons. Technical Physics Letters, 2010, 36, 629-631.	0.7	0

#	Article	IF	CITATIONS
37	Modification of GaAs surface by low-current Townsend discharge. Journal Physics D: Applied Physics, 2010, 43, 275302.	2.8	9
38	Planar sulfur-doped silicon detectors for high-speed infrared thermography. Infrared Physics and Technology, 2009, 52, 25-31.	2.9	6
39	Redistribution of deep selenium and sulfur impurities in silicon upon surface doping with phosphorus. Semiconductors, 2009, 43, 710-715.	0.5	2
40	Townsend-like discharge: the suppression of instabilities by a semiconductor electrode. Journal Physics D: Applied Physics, 2009, 42, 235208.	2.8	13
41	Gas discharge in thin gaps filled with argon and nitrogen at cryogenic temperatures. Technical Physics Letters, 2008, 34, 615-617.	0.7	7
42	Development of photodetectors for image converters: Doping of silicon with selenium from the gas phase. Semiconductors, 2008, 42, 448-452.	0.5	4
43	Control of the breakdown delay time in a micro-discharge system by small dc bias current. Journal Physics D: Applied Physics, 2008, 41, 135502.	2.8	6
44	Control of a noise-induced transition in a nonlinear dynamical system. Physical Review E, 2008, 77, 026201.	2.1	7
45	Planar microdischarge device for high-speed infrared thermography: Application of selenium-doped silicon detectors. Journal of Applied Physics, 2008, 103, 114512.	2.5	10
46	Spontaneous division of dissipative solitons in a planar gas-discharge system with high ohmic electrode. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 358, 404-408.	2.1	22
47	Silicon Doped with Sulfur as a Detector Material for High Speed Infrared Image Converters. Solid State Phenomena, 2005, 108-109, 401-406.	0.3	4
48	Pattern formation in planar dc-driven semiconductor–gas discharge devices: two mechanisms. Journal Physics D: Applied Physics, 2005, 38, 468-476.	2.8	34
49	Rotating bound states of dissipative solitons in systems of reaction-diffusion type. European Physical Journal B, 2003, 37, 199-204.	1.5	17
50	Rotating waves in a planar dc-driven gas-discharge system with semi-insulating GaAs cathode. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 307, 299-303.	2.1	24
51	Phase transition in an ensemble of dissipative solitons of a Turing system. Physical Review E, 2003, 67, 035203.	2.1	11
52	Sensitivity performance of ultrafast IR imaging systems in the basis of a planar semiconductor-gas discharge IR-to-visible converter. , 2003, , .		2
53	<title>Noise properties of a high-speed semiconductor-gas-discharge infrared imager</title> . , 2002, 4669, 1		12
54	<title>Application of high-speed IR converter in scientific and technological research</title> ., 2002, 4669, 13.		6

#	Article	IF	CITATIONS
55	Multioscillatory patterns in a hybrid semiconductor gas-discharge system. Physical Review E, 2002, 65, 066210.	2.1	34
56	Spatiotemporal structures in a transversely extended semiconductor system. Technical Physics Letters, 2002, 28, 910-912.	0.7	13
57	Spatiotemporal filamentary patterns in a dc-driven planar gas discharge system. Physical Review E, 2001, 63, 026409.	2.1	52
58	Plasma spots in a gas discharge system: birth, scattering and formation of molecules. Physics Letters, Section A: General, Atomic and Solid State Physics, 2001, 283, 349-354.	2.1	87
59	High-Speed Switch-On of a Semiconductor Gas Discharge Image Converter Using Optimal Control Methods. Journal of Computational Physics, 2001, 170, 395-414.	3.8	18
60	SELF-ORGANIZED QUASIPARTICLES AND OTHER PATTERNS IN PLANAR GAS-DISCHARGE SYSTEMS. , 2001, , .		7
61	Dynamics of zigzag destabilized solitary stripes in a dc-driven pattern-forming semiconductor gas-discharge system. Physical Review E, 2000, 61, 4899-4905.	2.1	9
62	Nonlinear interaction of homogeneously oscillating domains in a planar gas discharge system. Physical Review E, 2000, 62, 4889-4897.	2.1	49
63	High speed conversion of infrared images with a planar gas discharge system. Journal of Applied Physics, 1999, 85, 3960-3965.	2.5	40
64	Hexagon structures in a two-dimensional dc-driven gas discharge system. Physical Review E, 1998, 58, 7109-7117.	2.1	69
65	Zigzag Destabilized Spirals and Targets. Physical Review Letters, 1998, 80, 5341-5344.	7.8	73
66	Stripe Turing structures in a two-dimensional gas discharge system. Physical Review E, 1997, 55, 6731-6740.	2.1	61
67	Experimental Evidence for Zigzag Instability of Solitary Stripes in a Gas Discharge System. Physical Review Letters, 1997, 78, 3129-3132.	7.8	44
68	Glow dynamics in a semiconductor-gas discharge image converter. Journal of Applied Physics, 1997, 81, 1077-1086.	2.5	27
69	Formation of Clusters of Localized States in a Gas Discharge System via a Self-Completion Scenario. Physical Review Letters, 1997, 79, 2983-2986.	7.8	131
70	Hexagon and stripe Turing structures in a gas discharge system. Physics Letters, Section A: General, Atomic and Solid State Physics, 1996, 211, 184-190.	2.1	72
71	An effective infrared-visible conversion technique for remote quantitative measurements of thermal fields. Infrared Physics and Technology, 1995, 36, 809-817.	2.9	12
72	Excitation of wave patterns in an infrared-visible converter. Journal Physics D: Applied Physics, 1994, 27, 2354-2362.	2.8	5

#	Article	IF	CITATIONS
73	Spatially and temporally resolved IR image detection with a semiconductor-gas-discharge device. , 1994, , .		2
74	Experimental and numerical observation of quasiparticle like structures in a distributed dissipative system. Physics Letters, Section A: General, Atomic and Solid State Physics, 1993, 177, 220-224.	2.1	19
75	Speed properties of a semiconductorâ€discharge gap IR image converter studied with a streak camera system. Journal of Applied Physics, 1993, 74, 2159-2166.	2.5	40
76	Speed properties of a gas-discharge gap IR-visible converter studied with a streak-camera system. Proceedings of SPIE, 1993, , .	0.8	2
77	Application Of Ionization-Type Semiconductor Device For Infra-Red Diagnostics. , 1985, , .		0
78	New photographic system for investigating characteristics of infrared laser radiation. Soviet Journal of Quantum Electronics, 1977, 7, 954-957.	0.1	9
79	Semiconductor-gas discharge electronic devices: stability, patterns and control. , 0, , .		0
80	Suppression of a noise-induced transition by feedback control. , 0, , .		1