
Manfred Boehm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3473442/publications.pdf Version: 2024-02-01

MANEDED ROEHM

#	Article	IF	CITATIONS
1	Development of vascular disease models to explore disease causation and pathomechanisms of rare vascular diseases. Seminars in Immunopathology, 2022, 44, 259-268.	6.1	3
2	Middle age serum sodium levels in the upper part of normal range and risk of heart failure. European Heart Journal, 2022, 43, 3335-3348.	2.2	19
3	Diagnosis and discovery: Insights from the <scp>NIH</scp> Undiagnosed Diseases Program. Journal of Inherited Metabolic Disease, 2022, 45, 907-918.	3.6	2
4	Perspectives on Cognitive Phenotypes and Models of Vascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, , 101161ATVBAHA122317395.	2.4	4
5	Human induced pluripotent stem cells generated from Chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE) syndrome patients with a homozygous mutation in the PSMB8 gene (NIHTVBi016-A, NIHTVBi017-A, NIHTVBi018-A). Stem Cell Research, 2022, 62, 102820.	0.7	1
6	4D Printed Cardiac Construct with Aligned Myofibers and Adjustable Curvature for Myocardial Regeneration. ACS Applied Materials & amp; Interfaces, 2021, 13, 12746-12758.	8.0	82
7	Histone deacetylase 9 promotes endothelial-mesenchymal transition and an unfavorable atherosclerotic plaque phenotype. Journal of Clinical Investigation, 2021, 131, .	8.2	36
8	Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease. Nature, 2020, 577, 103-108.	27.8	198
9	CRISPR/Cas9-mediated introduction of the sodium/iodide symporter gene enables noninvasive in vivo tracking of induced pluripotent stem cell-derived cardiomyocytes. Stem Cells Translational Medicine, 2020, 9, 1203-1217.	3.3	10
10	Human induced pluripotent stem cells generated from a patient with a homozygous L272P mutation in the OTULIN gene (NIHTVBi014-A). Stem Cell Research, 2020, 47, 101921.	0.7	4
11	4D physiologically adaptable cardiac patch: A 4-month in vivo study for the treatment of myocardial infarction. Science Advances, 2020, 6, eabb5067.	10.3	118
12	STAT3 modulates reprogramming efficiency of human somatic cells; Insights from autosomal dominant Hyper IgE syndrome caused by STAT3 mutations. Biology Open, 2020, 9, .	1.2	3
13	Stem Cell-Derived Endothelial Cell Model that Responds to Tobacco Smoke Like Primary Endothelial Cells. Chemical Research in Toxicology, 2020, 33, 751-763.	3.3	12
14	Generation of human induced pluripotent stem cells (NIHTVBi004-A, NIHTVBi005-A, NIHTVBi006-A,) Tj ETQq0 0 0) rgBT /Ov 0.7	erlock 10 Tf 5 1
15	Impaired angiogenesis and extracellular matrix metabolism in autosomal-dominant hyper-IgE syndrome. Journal of Clinical Investigation, 2020, 130, 4167-4181.	8.2	13
16	Robust generation of erythroid and multilineage hematopoietic progenitors from human iPSCs using a scalable monolayer culture system. Stem Cell Research, 2019, 41, 101600.	0.7	23
17	Generation of human induced pluripotent stem cell lines (NIHTVBi011-A, NIHTVBi012-A, NIHTVBi013-A) from autosomal dominant Hyper IgE syndrome (AD-HIES) patients carrying STAT3 mutation. Stem Cell Research, 2019, 41, 101586.	0.7	5
18	Generation of human induced pluripotent stem cells from individuals with a homozygous CCR5Δ32 mutation. Stem Cell Research, 2019, 38, 101481.	0.7	6

Manfred Boehm

1

#	Article	IF	CITATIONS
19	Human blood vessel organoids as aÂmodel ofÂdiabetic vasculopathy. Nature, 2019, 565, 505-510.	27.8	500
20	Suboptimal hydration remodels metabolism, promotes degenerative diseases, and shortens life. JCI Insight, 2019, 4, .	5.0	25
21	Efficient differentiation of cardiomyocytes and generation of calcium-sensor reporter lines from nonhuman primate iPSCs. Scientific Reports, 2018, 8, 5907.	3.3	21
22	Rhesus iPSC Safe Harbor Gene-Editing Platform for Stable Expression of Transgenes in Differentiated Cells of All Germ Layers. Molecular Therapy, 2017, 25, 44-53.	8.2	26
23	Attenuation of Myeloid-Specific TGFÎ ² Signaling Induces Inflammatory Cerebrovascular Disease and Stroke. Circulation Research, 2017, 121, 1360-1369.	4.5	23
24	Increased activity of TNAP compensates for reduced adenosine production and promotes ectopic calcification in the genetic disease ACDC. Science Signaling, 2016, 9, ra121.	3.6	65
25	Abnormal molecular response to Takayasu arteritis causing extensive large-vessel calcification. Journal of Vascular Surgery Cases and Innovative Techniques, 2016, 2, 190-192.	0.6	1
26	Diffuse atrophic papules and plaques, intermittent abdominal pain, paresthesias, and cardiac abnormalities in a 55-year-old woman. Journal of the American Academy of Dermatology, 2016, 75, 1274-1277.	1.2	9
27	Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nature Communications, 2016, 7, 11853.	12.8	406
28	Diminution of signal transducer and activator of transcription 3 signaling inhibits vascular permeability and anaphylaxis. Journal of Allergy and Clinical Immunology, 2016, 138, 187-199.	2.9	56
29	Flavivirus Antagonism of Type I Interferon Signaling Reveals Prolidase as a Regulator of IFNAR1 Surface Expression. Cell Host and Microbe, 2015, 18, 61-74.	11.0	115
30	TGF-β Signaling Mediates Endothelial-to-Mesenchymal Transition (EndMT) During Vein Graft Remodeling. Science Translational Medicine, 2014, 6, 227ra34.	12.4	321
31	Medial vascular calcification revisited: review and perspectives. European Heart Journal, 2014, 35, 1515-1525.	2.2	567
32	New vessel formation in the context of cardiomyocyte regeneration – the role and importance of an adequate perfusing vasculature. Stem Cell Research, 2014, 13, 666-682.	0.7	13
33	Self-renewal and cell lineage differentiation strategies in human embryonic stem cells and induced pluripotent stem cells. Expert Opinion on Biological Therapy, 2014, 14, 1333-1344.	3.1	29
34	Cardiomyocyte maturation: It takes a village to raise a kid. Journal of Molecular and Cellular Cardiology, 2014, 74, 193-195.	1.9	2
35	Epithelial-to-Mesenchymal and Endothelial-to-Mesenchymal Transition. Circulation, 2012, 125, 1795-1808.	1.6	348

Cell-Based Regenerative Therapies: Role of Major Histocompatibility Complex-1 Antigen. , 2012, , 173-178.

Manfred Boehm

#	Article	IF	CITATIONS
37	<i>NT5E</i> Mutations and Arterial Calcifications. New England Journal of Medicine, 2011, 364, 432-442.	27.0	403
38	Major Histocompatibility Complex-I Expression on Embryonic Stem Cell-Derived Vascular Progenitor Cells Is Critical for Syngeneic Transplant Survival. Stem Cells, 2010, 28, 1465-1475.	3.2	21
39	Stat3-dependent acute Rantes production in vascular smooth muscle cells modulates inflammation following arterial injury in mice. Journal of Clinical Investigation, 2010, 120, 303-314.	8.2	85
40	Resident vascular progenitor cells: An emerging role for non-terminally differentiated vessel-resident cells in vascular biology. Stem Cell Research, 2009, 2, 2-15.	0.7	74
41	VEGFR1/CXCR4-positive progenitor cells modulate local inflammation and augment tissue perfusion by a SDF-1-dependent mechanism. Journal of Molecular Medicine, 2008, 86, 1221-1232.	3.9	39
42	p21Cip1 modulates arterial wound repair through the stromal cell–derived factor-1/CXCR4 axis in mice. Journal of Clinical Investigation, 2008, 118, 2050-61.	8.2	49
43	Bone marrow–derived immune cells regulate vascular disease through a p27Kip1-dependent mechanism. Journal of Clinical Investigation, 2004, 114, 419-426.	8.2	53
44	Bone marrow–derived immune cells regulate vascular disease through a p27Kip1-dependent mechanism. Journal of Clinical Investigation, 2004, 114, 419-426.	8.2	23