Georg Schramm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3473418/publications.pdf

Version: 2024-02-01

69 1,558 22
papers citations h-index

72 72 72 2812 all docs docs citations times ranked citing authors

36

g-index

#	Article	IF	Citations
1	STAT2 signaling restricts viral dissemination but drives severe pneumonia in SARS-CoV-2 infected hamsters. Nature Communications, 2020, 11, 5838.	12.8	225
2	PET/MRI in head and neck cancer: initial experience. European Journal of Nuclear Medicine and Molecular Imaging, 2013, 40, 6-11.	6.4	101
3	The PET-derived tumor-to-blood standard uptake ratio (SUR) is superior to tumor SUV as a surrogate parameter of the metabolic rate of FDG. EJNMMI Research, 2013, 3, 77.	2.5	96
4	Quantitative accuracy of attenuation correction in the Philips Ingenuity TF whole-body PET/MR system: a direct comparison with transmission-based attenuation correction. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2013, 26, 115-126.	2.0	61
5	Electromagnetic dipole strength of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow></mml:mrow><mml:mn>136</mml:mn></mml:msup></mml:math> Ba below the neutron separation energy. Physical Review C, 2012, 86, .	2.9	59
6	Correction of scan time dependence of standard uptake values in oncological PET. EJNMMI Research, 2014, 4, 18.	2.5	46
7	FDG PET/MR for lymph node staging in head and neck cancer. European Journal of Radiology, 2014, 83, 1163-1168.	2.6	46
8	Use of Multimodal Imaging and Clinical Biomarkers in Presymptomatic Carriers of <i>C9orf72</i> Repeat Expansion. JAMA Neurology, 2020, 77, 1008.	9.0	45
9	Nuclear Deformation and Neutron Excess as Competing Effects for Dipole Strength in the Pygmy Region. Physical Review Letters, 2014, 112, 072501.	7.8	43
10	Dipole strength in 78Se below the neutron separation energy from a combined analysis of 77Se(n, \hat{l}^3) and 78Se(\hat{l}^3 , \hat{l}^3 \hat{a} \in 2) experiments. Physical Review C, 2012, 85, .	2.9	42
11	PET/MR for therapy response evaluation in malignant lymphoma: initial experience. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2013, 26, 49-55.	2.0	42
12	Evaluation of Parallel Level Sets and Bowsher's Method as Segmentation-Free Anatomical Priors for Time-of-Flight PET Reconstruction. IEEE Transactions on Medical Imaging, 2018, 37, 590-603.	8.9	41
13	Quantitative assessment of the asphericity of pretherapeutic FDG uptake as an independent predictor of outcome in NSCLC. BMC Cancer, 2014, 14, 896.	2.6	40
14	Regional Accuracy of ZTE-Based Attenuation Correction in Static [18F]FDG and Dynamic [18F]PE2I Brain PET/MR. Frontiers in Physics, 2019, 7, .	2.1	38
15	Influence and Compensation of Truncation Artifacts in MR-Based Attenuation Correction in PET/MR. IEEE Transactions on Medical Imaging, 2013, 32, 2056-2063.	8.9	37
16	Whole liver segmentation based on deep learning and manual adjustment for clinical use in SIRT. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 2742-2752.	6.4	36
17	Quantitative PET in the 2020s: a roadmap. Physics in Medicine and Biology, 2021, 66, 06RM01.	3.0	36
18	Early and late effects of radiochemotherapy on cerebral blood flow in glioblastoma patients measured with non-invasive perfusion MRI. Radiotherapy and Oncology, 2016, 118, 24-28.	0.6	32

#	Article	IF	CITATIONS
19	Approximating anatomically-guided PET reconstruction in image space using a convolutional neural network. Neurolmage, 2021, 224, 117399.	4.2	29
20	Partial volume correction in arterial spin labeling using a Look‣ocker sequence. Magnetic Resonance in Medicine, 2013, 70, 1535-1543.	3.0	26
21	A Quantitative Evaluation of Joint Activity and Attenuation Reconstruction in TOF PET/MR Brain Imaging, Journal of Nuclear Medicine, 2019, 60, 1649-1655, Electromagnetic dipole strength up to the neutron separation energy from <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow< td=""><td>5.0</td><td>26</td></mml:mrow<></mml:msup></mml:math>	5.0	26
22	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msup><mml:mrow /><mml:mn>196</mml:mn></mml:mrow </mml:msup> Pt(<mml:math) 0="" 10="" 50="" 627<="" etqq0="" overlock="" rgbt="" td="" tf="" tj=""><td>Td (xmlns: 2.9</td><td>mml="http: 24</td></mml:math)>	Td (xmlns: 2.9	mml="http: 24
23	and <mml:math disclay="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> (mml:msup)<mml 1314-1319.<="" 2014,="" 21,="" academic="" ent="" in="" involvement="" lymph="" lymphoma.="" node="" of="" radiology,="" td=""><td>2.5</td><td>22</td></mml></mml:math>	2.5	22
24	Moving Toward Multicenter Therapeutic Trials in Amyotrophic Lateral Sclerosis: Feasibility of Data Pooling Using Different Translocator Protein PET Radioligands. Journal of Nuclear Medicine, 2020, 61, 1621-1627.	5.0	22
25	Dual time point based quantification of metabolic uptake rates in 18F-FDG PET. EJNMMI Research, 2013, 3, 16.	2.5	21
26	Evaluation and automatic correction of metal-implant-induced artifacts in MR-based attenuation correction in whole-body PET/MR imaging. Physics in Medicine and Biology, 2014, 59, 2713-2726.	3.0	21
27	FDG PET/MR in initial staging of sarcoma: Initial experience and comparison with conventional imaging. Clinical Imaging, 2017, 42, 126-132.	1.5	21
28	Time of Flight in Perspective: Instrumental and Computational Aspects of Time Resolution in Positron Emission Tomography. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, 5, 598-618.	3.7	18
29	A volume of intersection approach for on-the-fly system matrix calculation in 3D PET image reconstruction. Physics in Medicine and Biology, 2014, 59, 561-577.	3.0	17
30	Artificial Intelligence for PET Image Reconstruction. Journal of Nuclear Medicine, 2021, 62, 1330-1333.	5.0	17
31	Combined brain and spinal FDG PET allows differentiation between ALS and ALS mimics. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 2681-2690.		15
32	Role of electric and magnetic dipole strength functions in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mmultiscripts><mml:mi>Cd</mml:mi>cd<mml:none></mml:none><mml:mn>114</mml:mn>((<mml:mrow><mml:mi>γ</mml:mi><mml:mml="http: 1998="" math="" mathml"="" www.w3.org=""><mml:mmultiscripts><mml:mi>Cd</mml:mi>Cd<mml:mprescripts><mml:mi>Cd</mml:mi><mml:mprescripts><mml:mi>Cd</mml:mi><mml:mprescripts><mml:mi>Cd</mml:mi><mml:mprescripts><mml:mi>Cd</mml:mi><mml:mprescripts><mml:mi>Cd</mml:mi><mml:mprescripts><mml:mi>Cd</mml:mi><mml:mprescripts><mml:mi>Cd</mml:mi><mml:mprescripts><mml:mi>Cd</mml:mi><mml:mprescripts><mml:mi>Cd</mml:mi><mml:mprescripts><mml:mi>Cd</mml:mi><mml:mprescripts><mml:mi>Cd</mml:mi><mml:mprescripts><mml:mi>Cd</mml:mi><mml:mprescripts><mml:mi>Cd</mml:mi><mml:mprescripts><mml:mi>Cd</mml:mi><mml:mprescripts><mml:mi>Cd</mml:mi><mml:mprescripts><mml:mi>Cd</mml:mi><mml:mprescripts><mml:mprescripts><mml:mi>Cd</mml:mi><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><mml:mprescripts><m< td=""><td>nl:mo>.</td></m<><td>12 nml:mo><m< td=""></m<></td></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mprescripts></mml:mmultiscripts></mml:mml="http:></mml:mrow></mml:mmultiscripts></mml:math>	nl:mo>.	12 nml:mo> <m< td=""></m<>
33	In Physical Review C, 2016 93. Estimation of Crystal Timing Properties and Efficiencies for the Improvement of (Joint) Maximum-Likelihood Reconstructions in TOF-PET. IEEE Transactions on Medical Imaging, 2020, 39, 952-963.		12
34	Metal artifact correction strategies in MRI-based attenuation correction in PET/MRI. BJR Open, 2019, 1, 20190033.	0.6	11
35	Neutron total cross section measurements of gold and tantalum at the nELBE photoneutron source. European Physical Journal A, 2013, 49, 1.	2.5	10
36	Correction of quantification errors in pelvic and spinal lesions caused by ignoring higher photon attenuation of bone in [¹⁸ F]NaF PET/MR. Medical Physics, 2015, 42, 6468-6476.	3.0	10

#	Article	IF	CITATIONS
37	Benefits of Using a Spatially-Variant Penalty Strength With Anatomical Priors in PET Reconstruction. IEEE Transactions on Medical Imaging, 2020, 39, 11-22.	8.9	10
38	Regional glucose metabolic decreases with ageing are associated with microstructural white matter changes: a simultaneous PET/MR study. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 664-680.	6.4	10
39	ELECTROMAGNETIC STRENGTH IN HEAVY NUCLEI – EXPERIMENTS AND A GLOBAL FIT. International Journal of Modern Physics E, 2011, 20, 431-442.	1.0	9
40	Synthesis and Kinetic Characterisation of Waterâ€Soluble Fluorogenic Acyl Donors for Transglutaminaseâ€2. ChemBioChem, 2016, 17, 1263-1281.	2.6	8
41	Long-term Ashtanga yoga practice decreases medial temporal and brainstem glucose metabolism in relation to years of experience. EJNMMI Research, 2020, 10, 50.	2.5	7
42	Evaluation of PET quantification accuracy in vivo. Nuklearmedizin - NuclearMedicine, 2014, 53, 67-77.	0.7	7
43	Improved anatomic visualization of a glomus caroticum tumour within the carotic bifurcation with combined 68Ga-DOTATATE PET/MRI. European Journal of Nuclear Medicine and Molecular Imaging, 2012, 39, 1087-1088.	6.4	6
44	Data driven time alignment for TOF-PET. , 2017, , .		6
45	Impact of left bundle branch block on myocardial perfusion and metabolism: A positron emission tomography study. Journal of Nuclear Cardiology, 2021, 28, 1730-1739.	2.1	6
46	Evaluation of <i>in vivo</i> quantification accuracy of the Ingenuityâ€₹F PET/MR. Medical Physics, 2015, 42, 5773-5781.	3.0	5
47	Rigid motion tracking using moments of inertia in TOF-PET brain studies. Physics in Medicine and Biology, 2021, 66, 184001.	3.0	5
48	Low septal to lateral wall 18F-FDG ratio is highly associated with mechanical dyssynchrony in non-ischemic CRT candidates. EJNMMI Research, 2019, 9, 105.	2.5	5
49	Use of Micro-Computed Tomography to Visualize and Quantify COVID-19 Efficiency in Free-Breathing Hamsters. Methods in Molecular Biology, 2022, 2410, 177-192.	0.9	5
50	Photon strength in spherical and deformed heavy nuclei. EPJ Web of Conferences, 2010, 8, 02006.	0.3	4
51	Interobserver variability of image-derived arterial blood SUV in whole-body FDG PET. EJNMMI Research, 2019, 9, 23.	2.5	4
52	On the relation between Kaiser–Bessel blob and tube of response based modelling of the system matrix in iterative PET image reconstruction. Physics in Medicine and Biology, 2015, 60, 4209-4224.	3.0	3
53	Approximating MRI-Based Anatomically Guided PET Reconstruction with a Convolutional Neural Network. , $2018, $		3
54	Estimation of crystal timings in TOF-PET., 2018, , .		3

#	Article	IF	CITATIONS
55	Fast and memory-efficient reconstruction of sparse Poisson data in listmode with non-smooth priors with application to time-of-flight PET. Physics in Medicine and Biology, 2022, 67, 155020.	3.0	3
56	Modeling magnetization transfer effects of Q2TIPS bolus saturation in multi-TI pulsed arterial spin labeling. Magnetic Resonance in Medicine, 2014, 72, 1007-1014.	3.0	2
57	Spatially-variant Strength for Anatomical Priors in PET Reconstruction. , 2017, , .		2
58	4D CBCT reconstruction with TV regularization on a dynamic software phantom. , 2019, , .		2
59	2-D Feasibility Study of Joint Reconstruction of Attenuation and Activity in Limited Angle TOF-PET. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, 5, 712-722.	3.7	2
60	Photon strength function deduced from photon scattering and neutron capture. EPJ Web of Conferences, 2010, 8, 07008.	0.3	1
61	Combined study of the gamma-ray strength function of 114Cd with (n,γ) and (γ,γ') reactions. EPJ Web of Conferences, 2015, 93, 01012.	0.3	1
62	Rigid Motion Tracking using Moments of Inertia in TOF-PET Brain Studies. , 2020, , .		1
63	Investigation of dipole strength at the ELBE accelerator in Dresden-Rossendorf. EPJ Web of Conferences, 2012, 21, 04006.	0.3	0
64	Investigation of dipole strength up to the neutron separation energy at \hat{I}^3 ELBE. EPJ Web of Conferences, 2015, 93, 01040.	0.3	0
65	Measurement of the photodissociation of the deuteron at energies relevant to Big Bang nucleosynthesis. Journal of Physics: Conference Series, 2016, 665, 012003.	0.4	0
66	An approach for a reconstruction-derived whole-blood arterial input function (RDIF) in PET/MRI. , 2018, , .		0
67	Maximum Likelihood Estimation of the Geometric Sensitivities in PET. , 2019, , .		0
68	Limited Angle Tomography reconstruction for non-standard MBI system by means of parallel-hole and pinhole optics. Journal of Instrumentation, 2020, 15, C04019-C04019.	1.2	0
69	Can nuclear imaging accurately detect scar in ischemic cardiac resynchronization therapy candidates?. Nuclear Medicine Communications, 2022, Publish Ahead of Print, .	1.1	0