Uwe Schnakenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3473298/publications.pdf

Version: 2024-02-01

114 papers 3,158 citations

32 h-index 51 g-index

117 all docs

117 docs citations

times ranked

117

4427 citing authors

#	Article	IF	Citations
1	The spatial self-organization within pluripotent stem cell colonies is continued in detaching aggregates. Biomaterials, 2022, 282, 121389.	11.4	15
2	Characterization of transient rheological behavior of soft materials using ferrofluid droplets. Sensors and Actuators A: Physical, 2022, 344, 113756.	4.1	1
3	Microelectrode Combinations of Gold and Polypyrrole Enable Highly Stable Twoâ€electrode Electrochemical Impedance Spectroscopy Measurements under Turbulent Flow Conditions. Electroanalysis, 2021, 33, 197-207.	2.9	9
4	Electrochemical Impedance Spectroscopy Biosensor Enabling Kinetic Monitoring of Fucosyltransferase Activity. ACS Sensors, 2021, 6, 1003-1011.	7.8	9
5	Dry Film Resist Laminated Microfluidic System for Electrical Impedance Measurements. Micromachines, 2021, 12, 632.	2.9	11
6	Stretchable electrical cell-substrate impedance sensor platform for monitoring cell monolayers under strain. Sensors and Actuators B: Chemical, 2021, 336, 129656.	7.8	4
7	Microfluidic-Based Electrical Impedance Spectroscopy System Using Multilevel Lamination of Dry Film Photoresist., 2021,,.		3
8	FhuA–Grubbs–Hoveyda Biohybrid Catalyst Embedded in a Polymer Film Enables Catalysis in Neat Substrates. ACS Catalysis, 2020, 10, 10946-10953.	11.2	5
9	PortaDrop: A portable digital microfluidic platform providing versatile opportunities for Lab-On-A-Chip applications. PLoS ONE, 2020, 15, e0238581.	2.5	10
10	Electrochemical Impedance Spectroscopy Using Interdigitated Gold–Polypyrrole Electrode Combination. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900827.	1.8	7
11	Different Frequency of Cyclic Tensile Strain Relates to Anabolic/Catabolic Conditions Consistent with Immunohistochemical Staining Intensity in Tenocytes. International Journal of Molecular Sciences, 2020, 21, 1082.	4.1	19
12	The metalloproteinase ADAM15 is upregulated by shear stress and promotes survival of endothelial cells. Journal of Molecular and Cellular Cardiology, 2019, 134, 51-61.	1.9	24
13	In Situ Monitoring of Membrane Protein Insertion into Block Copolymer Vesicle Membranes and Their Spreading via Potential-Assisted Approach. ACS Applied Materials & Spreading via Potential Assisted Approach. ACS Applied Materials & Spreading via Potential Assisted Approach. ACS Applied Materials & Spreading via Potential Assisted Approach. ACS Applied Materials & Spreading via Potential Assisted Approach. ACS Applied Materials & Spreading via Potential Assisted Approach. ACS Applied Materials & Spreading via Potential Assisted Approach. ACS Applied Materials & Spreading via Potential Assisted Approach. ACS Applied Materials & Spreading via Potential Assisted Approach. ACS Applied Materials & Spreading via Potential Assisted Approach. ACS Applied Materials & Spreading via Potential Assisted Approach. ACS Applied Materials & Spreading via Potential Assisted Approach. ACS Applied Materials & Spreading via Potential Assisted Approach. ACS Applied Materials & Spreading via Potential Assisted Approach. ACS Applied Materials & Spreading via Potential Assisted Approach. ACS Applied Materials & Spreading via Potential Assisted Approach.	8.0	13
14	Role of Substrate Surface Morphology on the Performance of Graphene Inks for Flexible Electronics. ACS Applied Electronic Materials, 2019, 1, 1909-1916.	4.3	10
15	Microfluidic Irreversible Electroporation—A Versatile Tool to Extract Intracellular Contents of Bacteria and Yeast. Metabolites, 2019, 9, 211.	2.9	11
16	Gold-supported magnetron sputtered Ir thin films as OER catalysts for cost-efficient water electrolysis. International Journal of Hydrogen Energy, 2018, 43, 16905-16912.	7.1	22
17	One-port portable SAW sensor system. Measurement Science and Technology, 2018, 29, 015107.	2.6	4
18	Six-layer lamination of a new dry film negative-tone photoresist for fabricating complex 3D microfluidic devices. Microfluidics and Nanofluidics, 2017, 21, 1.	2,2	9

#	Article	IF	CITATIONS
19	3-Dimensional fluid flow profile on a structured PDMS surface., 2017,,.		O
20	Electrical impedance spectroscopy of single cells in hydrodynamic traps. Sensors and Actuators B: Chemical, 2017, 248, 419-429.	7.8	31
21	A new microfluidic device design for a defined positioning of neurons <i>in vitro</i> . Biomicrofluidics, 2017, 11, 044103.	2.4	2
22	Single Interdigital Transducer Approach for Gravimetrical SAW Sensor Applications in Liquid Environments. Sensors, 2017, 17, 2931.	3.8	10
23	Portable SAW Impedance Sensor Using a 1-Port Resonator Approach. Proceedings (mdpi), 2017, 1, .	0.2	1
24	Passivation of magnetic material used in cell culture environment. Sensors and Actuators B: Chemical, 2016, 236, 85-90.	7.8	4
25	Simultaneous Electrochemical Impedance Spectroscopy and Localized Surface Plasmon Resonance in a Microfluidic Chip: New Insights into the Spatial Origin of the Signal. Analytical Chemistry, 2016, 88, 9590-9596.	6.5	22
26	<i>In situ</i> Electrochemical Impedance Spectroscopy of Electrostatically Driven Selective Gold Nanoparticle Adsorption on Block Copolymer Lamellae. ACS Applied Materials & Driven Selective Gold, 8, 27282-27290.	8.0	14
27	Lectin binding studies on a glycopolymer brush flow-through biosensor by localized surface plasmon resonance. Analytical and Bioanalytical Chemistry, 2016, 408, 5633-5640.	3.7	20
28	Hampering of the Stability of Gold Electrodes by Ferri-/Ferrocyanide Redox Couple Electrolytes during Electrochemical Impedance Spectroscopy. Analytical Chemistry, 2016, 88, 682-687.	6.5	53
29	Effects of Plectin Depletion on Keratin Network Dynamics and Organization. PLoS ONE, 2016, 11, e0149106.	2.5	29
30	Fluid transport via pneumatically actuated waves on a ciliated wall. Journal of Micromechanics and Microengineering, 2015, 25, 125009.	2.6	9
31	Flexible and Stretchable Gold Microstructures on Extra Soft Poly(dimethylsiloxane) Substrates. Advanced Materials, 2015, 27, 6664-6669.	21.0	25
32	Evaluating the Thickness of Multivalent Glycopolymer Brushes for Lectin Binding. Macromolecular Rapid Communications, 2015, 36, 1472-1478.	3.9	29
33	Surface topography enhances differentiation of mesenchymal stem cells towards osteogenic and adipogenic lineages. Biomaterials, 2015, 61, 316-326.	11.4	336
34	Real-time imaging system using a 12-MHz forward-looking catheter with single chip CMUT-on-CMOS array. , 2015, , .		16
35	Miniaturized multi-coil arrays for functional planar imaging with a single-sided NMR sensor. Journal of Magnetic Resonance, 2015, 254, 10-18.	2.1	21
36	Simultaneous optical and impedance analysis of single cells: A comparison of two microfluidic sensors with sheath flow focusing. Engineering in Life Sciences, 2015, 15, 286-296.	3.6	16

#	Article	IF	CITATIONS
37	Agarose-Based Substrate Modification Technique for Chemical and Physical Guiding of Neurons In Vitro. ACS Applied Materials & Enterfaces, 2015, 7, 18769-18777.	8.0	15
38	A Miniaturized NMR-MOUSE with a High Magnetic Field Gradient (Mini-MOUSE). Applied Magnetic Resonance, 2015, 46, 181-202.	1.2	15
39	Plasmonic flow-through biosensor using a polymeric substrate. Journal of Micromechanics and Microengineering, 2014, 24, 034001.	2.6	3
40	Stacked planar micro coils for single-sided NMR applications. Journal of Magnetic Resonance, 2013, 230, 176-185.	2.1	39
41	Surface enhanced infrared spectroscopy with gold strip gratings. Optics Express, 2013, 21, 9005.	3.4	51
42	Keratins as the main component for the mechanical integrity of keratinocytes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18513-18518.	7.1	183
43	Optimization of platinum/iridium ratio in thin sputtered films for PEMFC cathodes. International Journal of Hydrogen Energy, 2012, 37, 7730-7735.	7.1	38
44	Multilayer Micro Coils for Thin Film Analysis with Mobile NMR Arrays. Procedia Engineering, 2011, 25, 395-398.	1.2	2
45	Focusing and Sorting of Particles in Spiral Microfluidic Channels. Procedia Engineering, 2011, 25, 1197-1200.	1.2	21
46	Preparation and properties of thin Pt–Ir films deposited by dc magnetron co-sputtering. International Journal of Hydrogen Energy, 2011, 36, 15437-15445.	7.1	36
47	Pulse-clamp method applied to SIROF stimulation electrodes. Sensors and Actuators B: Chemical, 2011, 154, 150-154.	7.8	2
48	Sputtered platinum–iridium layers as electrode material for functional electrostimulation. Thin Solid Films, 2011, 519, 3965-3970.	1.8	18
49	Super-selective electrical stimulation of the left ventricle via a miniaturized magnetized stimulation wire: proof of concept study. Biomedizinische Technik, 2010, 55, 285-290.	0.8	0
50	A monolithically fabricated flexible resonant circuit for catheter tracking in magnetic resonance imaginga *†. Sensors and Actuators B: Chemical, 2010, 144, 432-436.	7.8	10
51	Low density cell culture of locust neurons in closed-channel microfluidic devices. Journal of Insect Physiology, 2010, 56, 1003-1009.	2.0	9
52	Microfluidic biolectorâ€"microfluidic bioprocess control in microtiter plates. Biotechnology and Bioengineering, 2010, 107, 497-505.	3.3	92
53	Microfluidic system for cell fusion. Procedia Engineering, 2010, 5, 1332-1335.	1.2	2
54	Experimental validation of the "EasyTest Cell―operational principle for autonomous MEA characterization. International Journal of Hydrogen Energy, 2010, 35, 2428-2435.	7.1	5

#	Article	IF	Citations
55	Influence of sputtering pressure on surface structure and oxygen reduction reaction catalytic activity of thin platinum films. Electrochimica Acta, 2010, 55, 8992-8997.	5.2	16
56	Development of a four electrode sensor array for impedance spectroscopy in high content screenings of fermentation processes. Sensors and Actuators B: Chemical, 2010, 147, 93-99.	7.8	12
57	Neuronal cell growth on iridium oxide. Biomaterials, 2010, 31, 1055-1067.	11.4	44
58	Substrate arrays of Iridium Oxide microelectrodes for in vitro neuronal interfacing. Frontiers in Neuroengineering, 2009, 3, 1.	4.8	56
59	Pulse-clamp technique for single neuron stimulation electrode characterization., 2009, 2009, 1635-8.		1
60	Effect of sputtering parameters on surface morphology and catalytic efficiency of thin platinum films. Applied Surface Science, 2009, 255, 6479-6486.	6.1	48
61	Simulations and study of electrochemical hydrogen energy conversion in EasyTest Cell. Electrochimica Acta, 2009, 54, 1269-1276.	5.2	7
62	Telemetric Catheter-Based Pressure Sensor for Hemodynamic Monitoring: Experimental Experience. CardioVascular and Interventional Radiology, 2009, 32, 714-719.	2.0	2
63	SIROF stimulation electrode evaluation using the pulse–clamp method. Procedia Chemistry, 2009, 1, 269-272.	0.7	2
64	Micro-bioreactors for fed-batch fermentations with integrated online monitoring and microfluidic devices. Biosensors and Bioelectronics, 2009, 24, 1411-1416.	10.1	62
65	Iridium oxide microelectrode arrays for in-vitro stimulation of individual rat neurons from dissociated cultures. Frontiers in Neuroengineering, 2009, 2, 16.	4.8	39
66	Performance of laboratory polymer electrolyte membrane hydrogen generator with sputtered iridium oxide anode. Journal of Power Sources, 2008, 185, 1073-1078.	7.8	37
67	Sputtered Ir Films Evaluated for Electrochemical Performance II. Simulations. Journal of the Electrochemical Society, 2008, 155, F66.	2.9	8
68	Sputtered Ir Films Evaluated for Electrochemical Performance I. Experimental Results. Journal of the Electrochemical Society, 2008, 155, F61.	2.9	35
69	Micro Structured Planar Gradient Coils for Low Field Magnetic Resonance Imaging. , 2007, , .		0
70	Sputtered Iridium Oxide for Stimulation Electrode Coatings. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 6048-51.	0.5	2
71	Numerical analysis and characterization of bionic valves for microfluidic PDMS-based systems. Journal of Micromechanics and Microengineering, 2007, 17, S122-S127.	2.6	15
72	Reactively Sputtered Iridium Oxide. Journal of the Electrochemical Society, 2007, 154, F83.	2.9	32

#	Article	IF	Citations
73	A fast telemetric pressure and temperature sensor system for medical applications. Journal of Micromechanics and Microengineering, 2007, 17, S98-S102.	2.6	37
74	Platform for Temporary Testing of Hybrid Microsystems at High Frequencies. Journal of Microelectromechanical Systems, 2007, 16, 1367-1377.	2.5	8
75	Detecting endoleaks after endovascular AAA repair with a minimally invasive, implantable, telemetric pressure sensor: an in vitro study. European Radiology, 2007, 17, 2589-2597.	4.5	23
76	Iridium sputtered at varying pressures and target-substrate-distances evaluated for use as stimulation electrode material., 2006, 2006, 3353-6.		2
77	Deposition of sputtered iridium oxide—Influence of oxygen flow in the reactor on the film properties. Applied Surface Science, 2006, 253, 1964-1969.	6.1	25
78	Long-term stability of PDMS-based microfluidic systems used for biocatalytic reactions. Journal of Micromechanics and Microengineering, 2006, 16, 2425-2428.	2.6	10
79	Electrochemical Properties and Applications of Sputtered Iridium Oxide Thin Films. , 2006, , 729-735.		1
80	RF-sputtering of iridium oxide to be used as stimulation material in functional medical implants. Journal of Micromechanics and Microengineering, 2006, 16, S142-S148.	2.6	53
81	Iridium sputtered at varying pressures and target-substrate-distances evaluated for use as stimulation electrode material. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .	0.5	0
82	Electrodeposition and properties of NiW films for MEMS application. Electrochimica Acta, 2005, 50, 5573-5580.	5.2	57
83	Transponder-based sensor for monitoring electrical properties of biological cell solutions. Journal of Bioscience and Bioengineering, 2005, 100, 172-177.	2.2	26
84	Intravascular pressure monitoring system. Sensors and Actuators A: Physical, 2004, 110, 61-67.	4.1	40
85	Sputtered Iridium Oxide Films as Charge Injection Material for Functional Electrostimulation. Journal of the Electrochemical Society, 2004, 151, E226.	2.9	130
86	Determination of Young's modulus of electroplated nickel. Electrochimica Acta, 2003, 48, 3029-3035.	5.2	48
87	Theoretical calculations and performance results of a PZT thin film actuator. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2003, 50, 1240-1246.	3.0	23
88	Characterization of electroplated nickel. Microsystem Technologies, 2002, 9, 87-91.	2.0	47
89	Material characterisation of electroplated nickel structures for microsystem technology. Electrochimica Acta, 2001, 47, 55-60.	5.2	31
90	Micro-transponder systems for medical applications. IEEE Transactions on Instrumentation and Measurement, 2001, 50, 1551-1555.	4.7	50

#	Article	IF	CITATIONS
91	Development of a Completely Encapsulated Intraocular Pressure Sensor. Ophthalmic Research, 2000, 32, 278-284.	1.9	65
92	Micro-springs for temporary chip connections. Sensors and Actuators A: Physical, 2000, 85, 371-376.	4.1	11
93	Initial investigations on systems for measuring intraocular pressure. Sensors and Actuators A: Physical, 2000, 85, 287-291.	4.1	51
94	Miniaturized Ion-Selective Chip Electrode for Sensor Application. Analytical Chemistry, 1997, 69, 4032-4038.	6.5	45
95	Highly sensitive heavy metal analysis on platinum- and gold-ultramicroelectrode arrays. Electroanalysis, 1997, 9, 125-129.	2.9	46
96	Miniaturised ion-selective sensor chip for potassium measurement in a biomedical application. Sensors and Actuators B: Chemical, 1996, 34, 252-257.	7.8	19
97	Novel potentiometric silicon sensor for medical devices. Sensors and Actuators B: Chemical, 1996, 34, 476-480.	7.8	24
98	Properties of interdigital electrode arrays with different geometries. Analytica Chimica Acta, 1995, 305, 126-136.	5.4	69
99	Fabrication of electrode arrays in the quarter micron regime for biotechnological applications. Sensors and Actuators A: Physical, 1995, 46, 66-70.	4.1	19
100	Highly sensitive electrochemical microsensensors using submicrometer electrode arrays. Sensors and Actuators B: Chemical, 1995, 27, 394-397.	7.8	35
101	Chemical microsensor systems for medical applications in catheters. Sensors and Actuators B: Chemical, 1995, 27, 471-473.	7.8	28
102	Chip-array electrodes for simultaneous stripping analysis of trace metals. Sensors and Actuators B: Chemical, 1995, 25, 899-903.	7.8	28
103	Design of asynchronous dielectric micromotors. Journal of Electrostatics, 1994, 33, 159-185.	1.9	18
104	Superconducting Nb/AlOX/Nb tunnel junctions on micromachined silicon substrates. Journal of Low Temperature Physics, 1993, 93, 617-622.	1.4	3
105	New cryoelectronic detector concept based on twoâ€dimensional heat diffusion. Journal of Applied Physics, 1993, 73, 2659-2666.	2.5	5
106	Lithography with high depth of focus by an ion projection system. Journal of Microelectromechanical Systems, 1992, 1, 116-120.	2.5	3
107	Thermal Annealing Effects on the Mechanical Properties of Plasmaâ€Enhanced Chemical Vapor Deposited Silicon Oxide Films. Journal of the Electrochemical Society, 1992, 139, 1730-1735.	2.9	53
108	Dielectric induction micromotors: Field levitation and torque-frequency characteristics. Sensors and Actuators A: Physical, 1992, 32, 525-530.	4.1	11

#	Article	IF	CITATIONS
109	A smart accelerometer with on-chip electronics fabricated by a commercial CMOS process. Sensors and Actuators A: Physical, 1992, 31, 121-124.	4.1	30
110	NH4OH-based etchants for silicon micromachining: Influence of additives and stability of passivation layers. Sensors and Actuators A: Physical, 1990, 25, 1-7.	4.1	29
111	NH4Oh-based etchants for silicon micromachining. Sensors and Actuators A: Physical, 1990, 23, 1031-1035.	4.1	100
112	Disorder in vitreous SiO2: The effect of thermal annealing on structural properties. Journal of Applied Physics, 1990, 68, 3532-3537.	2.5	55
113	Multi-Beam Concepts for Nanometer Devices. Japanese Journal of Applied Physics, 1989, 28, 2058-2064.	1.5	3
114	Multi electron beam lithography: Fabrication of a control unit. Microelectronic Engineering, 1989, 9, 205-208.	2.4	12