
Huan Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/347320/publications.pdf Version: 2024-02-01

ΗΠΑΝΤΗ

#	Article	IF	CITATIONS
1	Unexpected selective alkaline periodate oxidation of chitin for the isolation of chitin nanocrystals. Green Chemistry, 2021, 23, 745-751.	9.0	19
2	Selfâ€Assembly of Surfaceâ€Acylated Cellulose Nanowhiskers and Graphene Oxide for Multiresponsive Janusâ€Like Films with Timeâ€Dependent Dryâ€State Structures. Small, 2020, 16, e2004922.	10.0	7
3	Highly Boosted Oxygen Reduction Reaction Activity by Tuning the Underwater Wetting State of the Superhydrophobic Electrode. Small, 2017, 13, 1601250.	10.0	107
4	Facile One-Step Strategy for Highly Boosted Microbial Extracellular Electron Transfer of the Genus <i>Shewanella</i> . ACS Nano, 2016, 10, 6331-6337.	14.6	17
5	Hydroactuated Configuration Alteration of Fibrous Dandelion Pappi: Toward Selfâ€Controllable Transport Behavior. Advanced Functional Materials, 2016, 26, 7378-7385.	14.9	25
6	Bio-inspired flexible fiber brushes that keep liquids in a controlled manner by closing their ends. NPG Asia Materials, 2016, 8, e241-e241.	7.9	10
7	Hydrophilicity boosted extracellular electron transfer in Shewanella loihica PV-4. RSC Advances, 2016, 6, 22488-22493.	3.6	13
8	Instability of Liquids in Flexible Fiber Brushes under Applied Pressure. Langmuir, 2016, 32, 3262-3268.	3.5	7
9	Chinese brushes: From controllable liquid manipulation to template-free printing microlines. Nano Research, 2015, 8, 97-105.	10.4	23
10	Frontispiece: Wettability-Regulated Extracellular Electron Transfer from the Living Organism ofShewanella loihicaPV-4. Angewandte Chemie - International Edition, 2015, 54, n/a-n/a.	13.8	0
11	Self-removal of condensed water on the legs of water striders. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9247-9252.	7.1	194
12	Bio-Inspired Direct Patterning Functional Nanothin Microlines: Controllable Liquid Transfer. ACS Nano, 2015, 9, 4362-4370.	14.6	22
13	Facilitated extracellular electron transfer of Shewanella loihica PV-4 by antimony-doped tin oxide nanoparticles as active microelectrodes. Nanoscale, 2015, 7, 18763-18769.	5.6	17
14	<i>Shewanella</i> â€mediated Biosynthesis of Manganese Oxide Microâ€/Nanocubes as Efficient Electrocatalysts for the Oxygen Reduction Reaction. ChemSusChem, 2015, 8, 158-163.	6.8	19
15	Wettabilityâ€Regulated Extracellular Electron Transfer from the Living Organism of <i>Shewanella loihica</i> PVâ€4. Angewandte Chemie - International Edition, 2015, 54, 1446-1451.	13.8	67
16	Self-assembly of alumina nanowires into controllable micro-patterns by laser-assisted solvent spreading: towards superwetting surfaces. CrystEngComm, 2015, 17, 540-545.	2.6	9
17	A bio-inspired flexible fiber array with an open radial geometry for highly efficient liquid transfer. NPG Asia Materials, 2014, 6, e125-e125.	7.9	37
18	Chinese Brushes: Controllable Liquid Transfer in Ratchet Conical Hairs. Advanced Materials, 2014, 26, 4889-4894.	21.0	95

Huan Liu

#	Article	IF	CITATIONS
19	Liquid Transfer: Chinese Brushes: Controllable Liquid Transfer in Ratchet Conical Hairs (Adv. Mater.) Tj ETQq1 1	0.784314 21.0	rgBT /Overloc
20	Hybrid bio–organic interfaces with matchable nanoscale topography for durable high extracellular electron transfer activity. Nanoscale, 2014, 6, 7866.	5.6	30
21	A facile bacterial assisted electrochemical self-assembly of polypyrrole micro-pillars: towards underwater low adhesive superoleophobicity. Nanoscale, 2014, 6, 190-194.	5.6	13
22	Biomoleculeâ€Doped PEDOT with Threeâ€Dimensional Nanostructures as Efficient Catalyst for Oxygen Reduction Reaction. Small, 2014, 10, 2087-2095.	10.0	40
23	Bio-Inspired Multistructured Conical Copper Wires for Highly Efficient Liquid Manipulation. ACS Nano, 2014, 8, 8757-8764.	14.6	31
24	Bio-inspired isotropic and anisotropic wettability on a Janus free-standing polypyrrole film fabricated by interfacial electro-polymerization. Journal of Materials Chemistry A, 2013, 1, 1740-1744.	10.3	39
25	Extracellular Electron Transfer of a Highly Adhesive and Metabolically Versatile Bacterium. ChemPhysChem, 2013, 14, 2407-2412.	2.1	13
26	Electrochemical Gating of Tricarboxylic Acid Cycle in Electricity-Producing Bacterial Cells of Shewanella. PLoS ONE, 2013, 8, e72901.	2.5	29
27	Potential and Cell Density Dependences of Extracellular Electron Transfer of Anode-Respiring <i>Geobacter sulfurreducens</i> Cells. Electrochemistry, 2012, 80, 330-333.	1.4	6
28	Self-assembled hierarchical micro/nano-structured PEDOT as an efficient oxygen reduction catalyst over a wide pH range. Journal of Materials Chemistry, 2012, 22, 17153.	6.7	29
29	Control of bacterial extracellular electron transfer by a solid-state mediator of polyaniline nanowire arrays. Energy and Environmental Science, 2012, 5, 8517.	30.8	65
30	Surface Wetting in Liquid–Liquid–Solid Triphase Systems: Solidâ€Phaseâ€Independent Transition at the Liquid–Liquid Interface by Lewis Acid–Base Interactions. Angewandte Chemie - International Edition, 2012, 51, 8348-8351.	13.8	41
31	Flavins Secreted by Bacterial Cells of <i>Shewanella</i> Catalyze Cathodic Oxygen Reduction. ChemSusChem, 2012, 5, 1054-1058.	6.8	33
32	Feedback stabilization involving redox states of c-type cytochromes in living bacteria. Chemical Communications, 2011, 47, 3870.	4.1	30
33	Negative Faradaic Resistance in Extracellular Electron Transfer by Anode-Respiring <i>Geobacter sulfurreducens</i> Cells. Environmental Science & Technology, 2011, 45, 10163-10169.	10.0	37
34	Redoxâ€Responsive Switching in Bacterial Respiratory Pathways Involving Extracellular Electron Transfer. ChemSusChem, 2010, 3, 1253-1256.	6.8	49
35	Electrochemical Characterization of a Single Electricityâ€Producing Bacterial Cell of <i>Shewanella</i> by Using Optical Tweezers. Angewandte Chemie - International Edition, 2010, 49, 6596-6599.	13.8	83
36	Reversible Wettability on Polycrystalline Diamond Films Between Superhydrophobicity and Superhydrophilicity. Journal of Nanoscience and Nanotechnology, 2010, 10, 7800-7803.	0.9	4

Huan Liu

#	Article	IF	CITATIONS
37	Long-term and thermally stable superhydrophobic surfaces of carbon nanofibers. Journal of Colloid and Interface Science, 2008, 320, 365-368.	9.4	28
38	Wettability Alteration of Polymer Surfaces Produced by Scraping. Journal of Adhesion Science and Technology, 2008, 22, 395-402.	2.6	69
39	Wetting and anti-wetting on aligned carbon nanotube films. Soft Matter, 2006, 2, 811.	2.7	193
40	Fabrication of superhydrophobic surfaces with non-aligned alkyl-modified multi-wall carbon nanotubes. Carbon, 2006, 44, 3226-3231.	10.3	60
41	Manipulation of Surface Wettability between Superhydrophobicity and Superhydrophilicity on Copper Films. ChemPhysChem, 2005, 6, 1475-1478.	2.1	145
42	Self-Assembly of Large-Scale Micropatterns on Aligned Carbon Nanotube Films. Angewandte Chemie - International Edition, 2004, 43, 1146-1149.	13.8	172
43	Responsive Aligned Carbon Nanotubes. Angewandte Chemie - International Edition, 2004, 43, 4663-4666.	13.8	80
44	Polyelectrolyte Multilayer as Matrix for Electrochemical Deposition of Gold Clusters:  Toward Super-Hydrophobic Surface. Journal of the American Chemical Society, 2004, 126, 3064-3065.	13.7	627
45	Reversible Wettability of a Chemical Vapor Deposition Prepared ZnO Film between Superhydrophobicity and Superhydrophilicity. Langmuir, 2004, 20, 5659-5661.	3.5	463
46	Electrochemical Deposition of Conductive Superhydrophobic Zinc Oxide Thin Films. Journal of Physical Chemistry B, 2003, 107, 9954-9957.	2.6	281
47	The Controlled Pattern Growth of Aligned Carbon Nanotubes. Synthetic Metals, 2003, 135-136, 815-816.	3.9	6
48	Control over the Wettability of an Aligned Carbon Nanotube Film. Journal of the American Chemical Society, 2003, 125, 14996-14997.	13.7	224