Huan Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/347320/publications.pdf

Version: 2024-02-01

186265 223800 3,608 48 28 46 citations h-index g-index papers 49 49 49 4477 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	Polyelectrolyte Multilayer as Matrix for Electrochemical Deposition of Gold Clusters:  Toward Super-Hydrophobic Surface. Journal of the American Chemical Society, 2004, 126, 3064-3065.	13.7	627
2	Reversible Wettability of a Chemical Vapor Deposition Prepared ZnO Film between Superhydrophobicity and Superhydrophilicity. Langmuir, 2004, 20, 5659-5661.	3.5	463
3	Electrochemical Deposition of Conductive Superhydrophobic Zinc Oxide Thin Films. Journal of Physical Chemistry B, 2003, 107, 9954-9957.	2.6	281
4	Control over the Wettability of an Aligned Carbon Nanotube Film. Journal of the American Chemical Society, 2003, 125, 14996-14997.	13.7	224
5	Self-removal of condensed water on the legs of water striders. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9247-9252.	7.1	194
6	Wetting and anti-wetting on aligned carbon nanotube films. Soft Matter, 2006, 2, 811.	2.7	193
7	Self-Assembly of Large-Scale Micropatterns on Aligned Carbon Nanotube Films. Angewandte Chemie - International Edition, 2004, 43, 1146-1149.	13.8	172
8	Manipulation of Surface Wettability between Superhydrophobicity and Superhydrophilicity on Copper Films. ChemPhysChem, 2005, 6, 1475-1478.	2.1	145
9	Highly Boosted Oxygen Reduction Reaction Activity by Tuning the Underwater Wetting State of the Superhydrophobic Electrode. Small, 2017, 13, 1601250.	10.0	107
10	Chinese Brushes: Controllable Liquid Transfer in Ratchet Conical Hairs. Advanced Materials, 2014, 26, 4889-4894.	21.0	95
11	Electrochemical Characterization of a Single Electricityâ€Producing Bacterial Cell of <i>Shewanella</i> by Using Optical Tweezers. Angewandte Chemie - International Edition, 2010, 49, 6596-6599.	13.8	83
12	Responsive Aligned Carbon Nanotubes. Angewandte Chemie - International Edition, 2004, 43, 4663-4666.	13.8	80
13	Wettability Alteration of Polymer Surfaces Produced by Scraping. Journal of Adhesion Science and Technology, 2008, 22, 395-402.	2.6	69
14	Wettabilityâ€Regulated Extracellular Electron Transfer from the Living Organism of <i>Shewanella loihica</i> PVâ€4. Angewandte Chemie - International Edition, 2015, 54, 1446-1451.	13.8	67
15	Control of bacterial extracellular electron transfer by a solid-state mediator of polyaniline nanowire arrays. Energy and Environmental Science, 2012, 5, 8517.	30.8	65
16	Fabrication of superhydrophobic surfaces with non-aligned alkyl-modified multi-wall carbon nanotubes. Carbon, 2006, 44, 3226-3231.	10.3	60
17	Redoxâ€Responsive Switching in Bacterial Respiratory Pathways Involving Extracellular Electron Transfer. ChemSusChem, 2010, 3, 1253-1256.	6.8	49
18	Surface Wetting in Liquid–Liquid–Solid Triphase Systems: Solidâ€Phaseâ€Independent Transition at the Liquid–Liquid Interface by Lewis Acid–Base Interactions. Angewandte Chemie - International Edition, 2012, 51, 8348-8351.	13.8	41

#	Article	IF	Citations
19	Biomoleculeâ€Doped PEDOT with Threeâ€Dimensional Nanostructures as Efficient Catalyst for Oxygen Reduction Reaction. Small, 2014, 10, 2087-2095.	10.0	40
20	Bio-inspired isotropic and anisotropic wettability on a Janus free-standing polypyrrole film fabricated by interfacial electro-polymerization. Journal of Materials Chemistry A, 2013, 1, 1740-1744.	10.3	39
21	Negative Faradaic Resistance in Extracellular Electron Transfer by Anode-Respiring <i>Geobacter sulfurreducens</i> Cells. Environmental Science & Envi	10.0	37
22	A bio-inspired flexible fiber array with an open radial geometry for highly efficient liquid transfer. NPG Asia Materials, 2014, 6, e125-e125.	7.9	37
23	Flavins Secreted by Bacterial Cells of <i>Shewanella</i> Catalyze Cathodic Oxygen Reduction. ChemSusChem, 2012, 5, 1054-1058.	6.8	33
24	Bio-Inspired Multistructured Conical Copper Wires for Highly Efficient Liquid Manipulation. ACS Nano, 2014, 8, 8757-8764.	14.6	31
25	Feedback stabilization involving redox states of c-type cytochromes in living bacteria. Chemical Communications, 2011, 47, 3870.	4.1	30
26	Hybrid bio–organic interfaces with matchable nanoscale topography for durable high extracellular electron transfer activity. Nanoscale, 2014, 6, 7866.	5.6	30
27	Self-assembled hierarchical micro/nano-structured PEDOT as an efficient oxygen reduction catalyst over a wide pH range. Journal of Materials Chemistry, 2012, 22, 17153.	6.7	29
28	Electrochemical Gating of Tricarboxylic Acid Cycle in Electricity-Producing Bacterial Cells of Shewanella. PLoS ONE, 2013, 8, e72901.	2.5	29
29	Long-term and thermally stable superhydrophobic surfaces of carbon nanofibers. Journal of Colloid and Interface Science, 2008, 320, 365-368.	9.4	28
30	Hydroactuated Configuration Alteration of Fibrous Dandelion Pappi: Toward Selfâ€Controllable Transport Behavior. Advanced Functional Materials, 2016, 26, 7378-7385.	14.9	25
31	Chinese brushes: From controllable liquid manipulation to template-free printing microlines. Nano Research, 2015, 8, 97-105.	10.4	23
32	Bio-Inspired Direct Patterning Functional Nanothin Microlines: Controllable Liquid Transfer. ACS Nano, 2015, 9, 4362-4370.	14.6	22
33	<i>Shewanella</i> à€mediated Biosynthesis of Manganese Oxide Microâ€∤Nanocubes as Efficient Electrocatalysts for the Oxygen Reduction Reaction. ChemSusChem, 2015, 8, 158-163.	6.8	19
34	Unexpected selective alkaline periodate oxidation of chitin for the isolation of chitin nanocrystals. Green Chemistry, 2021, 23, 745-751.	9.0	19
35	Facilitated extracellular electron transfer of Shewanella loihica PV-4 by antimony-doped tin oxide nanoparticles as active microelectrodes. Nanoscale, 2015, 7, 18763-18769.	5.6	17
36	Facile One-Step Strategy for Highly Boosted Microbial Extracellular Electron Transfer of the Genus <i>Shewanella</i> . ACS Nano, 2016, 10, 6331-6337.	14.6	17

#	Article	IF	CITATIONS
37	Extracellular Electron Transfer of a Highly Adhesive and Metabolically Versatile Bacterium. ChemPhysChem, 2013, 14, 2407-2412.	2.1	13
38	A facile bacterial assisted electrochemical self-assembly of polypyrrole micro-pillars: towards underwater low adhesive superoleophobicity. Nanoscale, 2014, 6, 190-194.	5.6	13
39	Hydrophilicity boosted extracellular electron transfer in Shewanella loihica PV-4. RSC Advances, 2016, 6, 22488-22493.	3.6	13
40	Bio-inspired flexible fiber brushes that keep liquids in a controlled manner by closing their ends. NPG Asia Materials, 2016, 8, e241-e241.	7.9	10
41	Self-assembly of alumina nanowires into controllable micro-patterns by laser-assisted solvent spreading: towards superwetting surfaces. CrystEngComm, 2015, 17, 540-545.	2.6	9
42	Instability of Liquids in Flexible Fiber Brushes under Applied Pressure. Langmuir, 2016, 32, 3262-3268.	3.5	7
43	Selfâ€Assembly of Surfaceâ€Acylated Cellulose Nanowhiskers and Graphene Oxide for Multiresponsive Janusâ€Like Films with Timeâ€Dependent Dryâ€State Structures. Small, 2020, 16, e2004922.	10.0	7
44	The Controlled Pattern Growth of Aligned Carbon Nanotubes. Synthetic Metals, 2003, 135-136, 815-816.	3.9	6
45	Potential and Cell Density Dependences of Extracellular Electron Transfer of Anode-Respiring <i>Geobacter sulfurreducens</i> <io companyatio<="" companyation="" de="" la="" td=""><td>1.4</td><td>6</td></io>	1.4	6
46	Reversible Wettability on Polycrystalline Diamond Films Between Superhydrophobicity and Superhydrophilicity. Journal of Nanoscience and Nanotechnology, 2010, 10, 7800-7803.	0.9	4
47	Liquid Transfer: Chinese Brushes: Controllable Liquid Transfer in Ratchet Conical Hairs (Adv. Mater.) Tj ETQq1 1 (0.784314 21.0	rgBT Overloc
48	Frontispiece: Wettability-Regulated Extracellular Electron Transfer from the Living Organism of Shewanella loihicaPV-4. Angewandte Chemie - International Edition, 2015, 54, n/a-n/a.	13.8	0