Teng Fu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3472914/publications.pdf

Version: 2024-02-01

471509 610901 1,173 24 17 24 citations h-index g-index papers 24 24 24 857 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Trinity effect of potassium sulfonate-benzimidozale towards self-intumescent flame-retarded polyester with low fire hazards. Chemical Engineering Journal, 2022, 429, 132121.	12.7	13
2	Bio-Based Flame-Retardant and Smoke-Suppressing Wood Plastic Composites Enabled by Phytic Acid Tyramine Salt. ACS Sustainable Chemistry and Engineering, 2022, 10, 5055-5066.	6.7	35
3	Flame-retardation of thermoplastic polyesters via cyclotetramerization from phthalonitrile to phthalocyanine: Pyrolysis processes and fire behaviour. Polymer Degradation and Stability, 2022, 200, 109939.	5.8	5
4	An Effective Green Porous Structural Adhesive for Thermal Insulating, Flame-Retardant, and Smoke-Suppressant Expandable Polystyrene Foam. Engineering, 2022, 17, 151-160.	6.7	23
5	Ultra-high fire-safety unsaturated polyesters enabled by self-assembled micro/nano rod from Schiff base, diphenylphosphinyl group and nickel (II) metal. Composites Part B: Engineering, 2022, 242, 110032.	12.0	19
6	Flame-responsive aryl ether nitrile structure towards multiple fire hazards suppression of thermoplastic polyester. Journal of Hazardous Materials, 2021, 403, 123714.	12.4	38
7	Targeted Copolymerization in Amorphous Regions for Constructing Crystallizable Functionalized Copolymers. Macromolecules, 2021, 54, 4412-4422.	4.8	7
8	Ultralight Biomass Aerogels with Multifunctionality and Superelasticity Under Extreme Conditions. ACS Applied Materials & Distributions (2021, 13, 59231-59242).	8.0	32
9	A highly-effective ionic liquid flame retardant towards fire-safety waterborne polyurethane (WPU) with excellent comprehensive performance. Polymer, 2020, 205, 122780.	3.8	29
10	Synergy effect between quaternary phosphonium ionic liquid and ammonium polyphosphate toward flame retardant PLA with improved toughness. Composites Part B: Engineering, 2020, 197, 108192.	12.0	87
11	<i>In situ</i> phthalocyanine synthesis chemistry in flames towards molecular fireproof engineering. Chemical Communications, 2020, 56, 9525-9528.	4.1	11
12	Fire hazards management for polymeric materials via synergy effects of pyrolysates-fixation and aromatized-charring. Journal of Hazardous Materials, 2020, 389, 122040.	12.4	29
13	New methods for flame-retarding PET without melt dripping. Chinese Science Bulletin, 2020, 65, 3160-3172.	0.7	7
14	3D printable robust shape memory PET copolyesters with fire safety <i>via</i> i¥-stacking and synergistic crosslinking. Journal of Materials Chemistry A, 2019, 7, 17037-17045.	10.3	69
15	Bioinspired Color Changing Molecular Sensor toward Early Fire Detection Based on Transformation of Phthalonitrile to Phthalocyanine. Advanced Functional Materials, 2019, 29, 1806586.	14.9	86
16	New application for aromatic Schiff base: High efficient flame-retardant and anti-dripping action for polyesters. Chemical Engineering Journal, 2018, 336, 622-632.	12.7	228
17	Effect of biphenyl biimide structure on the thermal stability, flame retardancy and pyrolysis behavior of PET. Polymer Degradation and Stability, 2018, 155, 162-172.	5.8	18
18	Novel phosphorus-containing halogen-free ionic liquid toward fire safety epoxy resin with well-balanced comprehensive performance. Chemical Engineering Journal, 2018, 354, 208-219.	12.7	178

TENG Fu

#	Article	IF	CITATION
19	Flame-Retardant Pressure-Sensitive Adhesives Derived from Epoxidized Soybean Oil and Phosphorus-Containing Dicarboxylic Acids. ACS Sustainable Chemistry and Engineering, 2017, 5, 3353-3361.	6.7	69
20	Coated vs. naked red phosphorus: A comparative study on their fire retardancy and smoke suppression for rigid polyurethane foams. Polymer Degradation and Stability, 2017, 136, 103-111.	5.8	68
21	Novel phosphorus-containing halogen-free ionic liquids: effect of sulfonate anion size on physical properties, biocompatibility, and flame retardancy. RSC Advances, 2016, 6, 52485-52494.	3.6	23
22	Inherent flame retardation of semi-aromatic polyesters via binding small-molecule free radicals and charring. Polymer Chemistry, 2016, 7, 1584-1592.	3.9	43
23	PET-based copolyesters with bisphenol A or bisphenol F structural units: Their distinct differences in pyrolysis behaviours and flame-retardant performances. Polymer Degradation and Stability, 2015, 120, 158-168.	5.8	17
24	A new approach to improving flame retardancy, smoke suppression and anti-dripping of PET: Via arylene-ether units rearrangement reactions at high temperature. Polymer, 2015, 77, 21-31.	3.8	39