Kaiming Liao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3472632/publications.pdf

Version: 2024-02-01

126907 161849 3,471 54 33 54 h-index citations g-index papers 55 55 55 4434 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A simple strategy that may effectively tackle the anode-electrolyte interface issues in solid-state lithium metal batteries. Chemical Engineering Journal, 2022, 427, 131001.	12.7	38
2	A Controllable Dual Interface Engineering Concept for Rational Design of Efficient Bifunctional Electrocatalyst for Zinc–Air Batteries. Small, 2022, 18, e2105604.	10.0	18
3	Towards practically accessible aprotic Li-air batteries: Progress and challenges related to oxygen-permeable membranes and cathodes. Energy Storage Materials, 2022, 45, 869-902.	18.0	32
4	Oneâ€dimensional metal–organic frameworkâ€reinforced gel polymer electrolyte enables a stable Li metal battery. Asia-Pacific Journal of Chemical Engineering, 2022, 17, .	1.5	10
5	Kirkendall synthesis and characterization of nanotubular (Bi2)m(Bi2Te3)n series. Materials Research Bulletin, 2022, 152, 111827.	5. 2	2
6	Smart Construction of an Intimate Lithium Garnet Interface for Allâ€Solidâ€State Batteries by Tuning the Tension of Molten Lithium. Advanced Functional Materials, 2021, 31, 2101556.	14.9	97
7	Tailoring charge and mass transport in cation/anion-codoped Ni3N / N-doped CNT integrated electrode toward rapid oxygen evolution for fast-charging zinc-air batteries. Energy Storage Materials, 2021, 39, 11-20.	18.0	44
8	Stabilizing Li Anodes in I ₂ Steam to Tackle the Shuttling-Induced Depletion of an Iodide/Triiodide Redox Mediator in Li–O ₂ Batteries with Suppressed Li Dendrite Growth. ACS Applied Materials & Dendrite Growth.	8.0	12
9	Recent Advances in Emerging Metal– and Covalent–Organic Frameworks for Enzyme Encapsulation. ACS Applied Materials & Interfaces, 2021, 13, 56752-56776.	8.0	67
10	Tuning Nitrogen in Graphitic Carbon Nitride Enabling Enhanced Performance for Polysulfide Confinement in Li–S Batteries. Energy & Fuels, 2020, 34, 11557-11564.	5.1	19
11	Achieving Safe and Dendrite-Suppressed Solid-State Li Batteries via a Novel Self-Extinguished Trimethyl Phosphate-Based Wetting Agent. Energy & Samp; Fuels, 2020, 34, 11547-11556.	5.1	19
12	Direct growth of ordered Nâ€doped carbon nanotube arrays on carbon fiber cloth as a freeâ€standing and binderâ€free air electrode for flexible quasiâ€solidâ€state rechargeable Znâ€Air batteries. , 2020, 2, 461-471.		64
13	Recent Advances in Filler Engineering of Polymer Electrolytes for Solid-State Li-Ion Batteries: A Review. Energy & Samp; Fuels, 2020, 34, 9189-9207.	5.1	89
14	Rich atomic interfaces between sub-1 nm RuOx clusters and porous Co3O4 nanosheets boost oxygen electrocatalysis bifunctionality for advanced Zn-air batteries. Energy Storage Materials, 2020, 32, 20-29.	18.0	84
15	Water-proof, electrolyte-nonvolatile, and flexible Li-Air batteries via O2-Permeable silica-aerogel-reinforced polydimethylsiloxane external membranes. Energy Storage Materials, 2020, 27, 297-306.	18.0	69
16	A smart lithiophilic polymer filler in gel polymer electrolyte enables stable and dendrite-free Li metal anode. Journal of Materials Chemistry A, 2020, 8, 9733-9742.	10.3	53
17	Selfâ€Catalyzed Growth of Co, Nâ€Codoped CNTs on Carbonâ€Encased CoS <i>_x</i> Surface: A Nobleâ€Metalâ€Free Bifunctional Oxygen Electrocatalyst for Flexible Solid Zn–Air Batteries. Advanced Functional Materials, 2019, 29, 1904481.	14.9	217
18	Photoelectrochemical response of Ag-graphene heterostructures: insight into the localized surface plasmon enhanced photocurrent generation process. Nanotechnology, 2019, 30, 495203.	2.6	5

#	Article	IF	Citations
19	An "electronegative―bifunctional coating layer: simultaneous regulation of polysulfide and Li-ion adsorption sites for long-cycling and "dendrite-free―Li–S batteries. Journal of Materials Chemistry A, 2019, 7, 22463-22474.	10.3	49
20	Layered Co/Ni-free oxides for sodium-ion battery cathode materials. Current Opinion in Green and Sustainable Chemistry, 2019, 17, 29-34.	5.9	14
21	Reduced air sensitivity and improved electrochemical stability of P2–Na2/3Mn1/2Fe1/4Co1/4O2 through atomic layer deposition-assisted Al2O3 coating. Composites Part B: Engineering, 2019, 173, 106913.	12.0	26
22	Ultralong Cycle Life Li–O ₂ Battery Enabled by a MOF-Derived Ruthenium–Carbon Composite Catalyst with a Durable Regenerative Surface. ACS Applied Materials & Samp; Interfaces, 2019, 11, 20091-20097.	8.0	46
23	Rational design of strontium antimony co-doped Li7La3Zr2O12 electrolyte membrane for solid-state lithium batteries. Journal of Alloys and Compounds, 2019, 794, 347-357.	5.5	42
24	Recent advances in the interface engineering of solid-state Li-ion batteries with artificial buffer layers: challenges, materials, construction, and characterization. Energy and Environmental Science, 2019, 12, 1780-1804.	30.8	230
25	Realizing fourfold enhancement in conductivity of perovskite Li0.33La0.557TiO3 electrolyte membrane via a Sr and Ta co-doping strategy. Journal of Membrane Science, 2019, 582, 194-202.	8.2	51
26	Enhancing the cycle life of Li-S batteries by designing a free-standing cathode with excellent flexible, conductive, and catalytic properties. Electrochimica Acta, 2019, 298, 421-429.	5.2	22
27	A cobalt and nickel co-modified layered P2-Na2/3Mn1/2Fe1/2O2 with excellent cycle stability for high-energy density sodium-ion batteries. Journal of Alloys and Compounds, 2019, 775, 383-392.	5.5	36
28	Dodecylamineâ€Induced Synthesis of a Nitrogenâ€Doped Carbon Comb for Advanced Lithium–Sulfur Battery Cathodes. Advanced Materials Interfaces, 2018, 5, 1701659.	3.7	21
29	Optimal synthesis and new understanding of P2-type Na2/3Mn1/2Fe1/4Co1/4O2 as an advanced cathode material in sodium-ion batteries with improved cycle stability. Ceramics International, 2018, 44, 5184-5192.	4.8	34
30	Flexible, Flameâ€Resistant, and Dendriteâ€Impermeable Gelâ€Polymer Electrolyte for Li–O ₂ /Air Batteries Workable Under Hurdle Conditions. Small, 2018, 14, e1801798.	10.0	113
31	Developing a "Waterâ€Defendable―and "Dendriteâ€Free―Lithiumâ€Metal Anode Using a Simple and Pr GeCl ₄ Pretreatment Method. Advanced Materials, 2018, 30, e1705711.	omising 21.0	186
32	A long-life lithium ion oxygen battery based on commercial silicon particles as the anode. Energy and Environmental Science, 2016, 9, 3262-3271.	30.8	89
33	Lowering the charge voltage of Li–O ₂ batteries via an unmediated photoelectrochemical oxidation approach. Journal of Materials Chemistry A, 2016, 4, 12411-12415.	10.3	59
34	Stabilization of polysulfides via lithium bonds for Li–S batteries. Journal of Materials Chemistry A, 2016, 4, 5406-5409.	10.3	105
35	A self-defense redox mediator for efficient lithium–O ₂ batteries. Energy and Environmental Science, 2016, 9, 1024-1030.	30.8	224
36	Spongeâ€Like Cathode Material Selfâ€Assembled from Twoâ€Dimensional V ₂ O ₅ Nanosheets for Sodiumâ€Ion Batteries. ChemElectroChem, 2015, 2, 1660-1664.	3.4	65

#	Article	IF	CITATIONS
37	An oxygen cathode with stable full discharge–charge capability based on 2D conducting oxide. Energy and Environmental Science, 2015, 8, 1992-1997.	30.8	113
38	Pd nanoparticle-modified electrodes for nonenzymatic hydrogen peroxide detection. Nanoscale Research Letters, 2015, 10, 1021.	5.7	24
39	Facile in Situ Preparation of Graphitic-C ₃ N ₄ @carbon Paper As an Efficient Metal-Free Cathode for Nonaqueous Li–O ₂ Battery. ACS Applied Materials & Interfaces, 2015, 7, 10823-10827.	8.0	75
40	Electrospinning of a PMA-co-PAA/FP biopolymer nanofiber: enhanced capability for immobilized horseradish peroxidase and its consequence for p-nitrophenol disposal. RSC Advances, 2015, 5, 41994-41998.	3.6	15
41	Nanoporous Ru as a Carbon―and Binderâ€Free Cathode for Li–O ₂ Batteries. ChemSusChem, 2015, 8, 1429-1434.	6.8	104
42	Superior Performance of a Li–O ₂ Battery with Metallic RuO ₂ Hollow Spheres as the Carbonâ€Free Cathode. Advanced Energy Materials, 2015, 5, 1500294.	19.5	139
43	Reducing the charging voltage of a Li–O ₂ battery to 1.9 V by incorporating a photocatalyst. Energy and Environmental Science, 2015, 8, 2664-2667.	30.8	147
44	A promising method for fabricating Ag nanoparticle modified nonenzyme hydrogen peroxide sensors. Sensors and Actuators B: Chemical, 2013, 181, 125-129.	7.8	35
45	Anisotropy antireflection TiO ₂ nanoparticle films fabricated with directed cluster beam deposition. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 2366-2369.	0.8	6
46	High-power splitting of expanded graphite to produce few-layer graphene sheets. Carbon, 2011, 49, 2862-2868.	10.3	28
47	Synthesis of hierarchical Ni11(HPO3)8(OH)6 superstructures based on nanorods through a soft hydrothermal route. Materials Research Bulletin, 2010, 45, 205-209.	5.2	16
48	In situ template route for synthesis of porous Ni12P5 superstructures and their applications in environmental treatments. CrystEngComm, 2010, 12, 1568.	2.6	40
49	Hydrothermal synthesis of Ni12P5 hollow microspheres, characterization and photocatalytic degradation property. Journal of Colloid and Interface Science, 2009, 332, 231-236.	9.4	36
50	Porous cuprous oxide microcubes for non-enzymatic amperometric hydrogen peroxide and glucose sensing. Electrochemistry Communications, 2009, 11, 812-815.	4.7	231
51	Ni2+ ions assisted hydrothermal synthesis of flowerlike Co11(HPO3)8(OH)6 superstructures and shape control. CrystEngComm, 2009, 11, 570.	2.6	27
52	Co2P nanostructures constructed by nanorods: hydrothermal synthesis and applications in the removal of heavy metal ions. New Journal of Chemistry, 2009, 33, 2055.	2.8	40
53	Controllable synthesis of polyhedral YF3 microcrystals via a potassium sodium tartrate-assisted hydrothermal route. CrystEngComm, 2008, 10, 1681.	2.6	27
54	Large-Scale Synthesis of Single Crystalline NiHPO (sub) 3 (sub) \hat{A} ·H(sub) 2 (sub) O Nanoneedle Bundles Based on the Dismutation of NaH(sub) 2 (sub) PO(sub) Crystal Growth and Design, 2008, 8, 3636-3640.	3.0	12