Liam S Sharninghausen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3472354/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Copper-Mediated Radiocyanation of Unprotected Amino Acids and Peptides. Journal of the American Chemical Society, 2022, 144, 7422-7429.	6.6	11
2	Sequential Ir/Cu-Mediated Method for the <i>Meta</i> -Selective C–H Radiofluorination of (Hetero)Arenes. Journal of the American Chemical Society, 2021, 143, 6915-6921.	6.6	18
3	Accessing Molecular Dimeric Ir Water Oxidation Catalysts from Coordination Precursors. Inorganic Chemistry, 2021, 60, 14349-14356.	1.9	12
4	Copper-mediated late-stage radiofluorination: five years of impact on preclinical and clinical PET imaging. Clinical and Translational Imaging, 2020, 8, 167-206.	1.1	44
5	NHC-Copper Mediated Ligand-Directed Radiofluorination of Aryl Halides. Journal of the American Chemical Society, 2020, 142, 7362-7367.	6.6	33
6	Modification of a pyridine-alkoxide ligand during the synthesis of coordination compounds. Inorganica Chimica Acta, 2019, 484, 75-78.	1.2	2
7	N,N,O Pincer Ligand with a Deprotonatable Site That Promotes Redoxâ€Leveling, High Mn Oxidation States, and a Mn 2 O 2 Dimer Competent for Catalytic Oxygen Evolution. European Journal of Inorganic Chemistry, 2019, 2019, 2115-2123.	1.0	8
8	A Dinuclear Iridium(V,V) Oxo-Bridged Complex Characterized Using a Bulk Electrolysis Technique for Crystallizing Highly Oxidizing Compounds. Inorganic Chemistry, 2018, 57, 5684-5691.	1.9	17
9	Some crystal growth strategies for diffraction structure studies of iridium complexes. Inorganica Chimica Acta, 2018, 480, 183-188.	1.2	3
10	A Pyridine Alkoxide Chelate Ligand That Promotes Both Unusually High Oxidation States and Water-Oxidation Catalysis. Accounts of Chemical Research, 2017, 50, 952-959.	7.6	84
11	The neutron diffraction structure of [Ir4(IMe)8H10]2+ polyhydride cluster: Testing the computational hydride positional assignments. Journal of Organometallic Chemistry, 2017, 849-850, 17-21.	0.8	8
12	Synthesis of pyridine-alkoxide ligands for formation of polynuclear complexes. New Journal of Chemistry, 2017, 41, 6709-6719.	1.4	12
13	Synthesis and Characterization of Iridium(V) Coordination Complexes With an N,Oâ€Đonor Organic Ligand. Angewandte Chemie, 2017, 129, 13227-13231.	1.6	11
14	Synthesis and Characterization of Iridium(V) Coordination Complexes With an N,Oâ€Đonor Organic Ligand. Angewandte Chemie - International Edition, 2017, 56, 13047-13051.	7.2	24
15	Activation, Deactivation and Reversibility in a Series of Homogeneous Iridium Dehydrogenation Catalysts. Israel Journal of Chemistry, 2017, 57, 937-944.	1.0	14
16	Redox Activity of Oxo-Bridged Iridium Dimers in an N,O-Donor Environment: Characterization of Remarkably Stable Ir(IV,V) Complexes. Journal of the American Chemical Society, 2017, 139, 9672-9683.	6.6	45
17	Catalytic Oxygen Evolution from Manganese Complexes with an Oxidationâ€Resistant N,N,Oâ€Donor Ligand. ChemPlusChem, 2016, 81, 1129-1132.	1.3	18
18	High Oxidation State Iridium Mono-μ-oxo Dimers Related to Water Oxidation Catalysis. Journal of the American Chemical Society, 2016, 138, 15917-15926.	6.6	41

LIAM S SHARNINGHAUSEN

#	Article	IF	CITATIONS
19	A Stable Coordination Complex of Rh(IV) in an N,O-Donor Environment. Journal of the American Chemical Society, 2015, 137, 15692-15695.	6.6	27
20	Methanol Dehydrogenation by Iridium N-Heterocyclic Carbene Complexes. Inorganic Chemistry, 2015, 54, 5079-5084.	1.9	146
21	Iridium catalyzed reversible dehydrogenation – Hydrogenation of quinoline derivatives under mild conditions. Journal of Organometallic Chemistry, 2015, 792, 184-189.	0.8	71
22	Gel-assisted crystallization of [Ir ₄ (IMe) ₇ (CO)H ₁₀] ²⁺ and [Ir ₄ (IMe) ₈ H ₉] ³⁺ clusters derived from catalytic glycerol dehydrogenation. Dalton Transactions, 2015, 44, 18403-18410.	1.6	20
23	Selective conversion of glycerol to lactic acid with iron pincer precatalysts. Chemical Communications, 2015, 51, 16201-16204.	2.2	86
24	Selective catalytic oxidation of sugar alcohols to lactic acid. Green Chemistry, 2015, 17, 594-600.	4.6	52
25	Experimental and computational studies of borohydride catalyzed hydrosilylation of a variety of Cî€O and Cî€N functionalities including esters, amides and heteroarenes. New Journal of Chemistry, 2014, 38, 1694-1700.	1.4	42
26	Efficient selective and atom economic catalytic conversion of glycerol to lactic acid. Nature Communications, 2014, 5, 5084.	5.8	207
27	A Carbeneâ€Rich but Carbonylâ€Poor [Ir ₆ (IMe) ₈ (CO) ₂ H ₁₄] ²⁺ Polyhydride Cluster as a Deactivation Product from Catalytic Clycerol Dehydrogenation. Angewandte Chemie - International Edition, 2014, 53, 12808-12811.	7.2	42
28	A Carbeneâ€Rich but Carbonylâ€Poor [Ir ₆ (IMe) ₈ (CO) ₂ H ₁₄] ²⁺ Polyhydride Cluster as a Deactivation Product from Catalytic Glycerol Dehydrogenation. Angewandte Chemie, 2014, 126, 13022-13025.	1.6	9