Vanessa Bailey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3472241/publications.pdf Version: 2024-02-01

JANESSA RAIL

#	Article	IF	CITATIONS
1	On the use of air temperature and precipitation as surrogate predictors in soil respiration modelling. European Journal of Soil Science, 2022, 73, .	3.9	14
2	Revisiting diffusion-based moisture functions: why do they fail?. Soil Biology and Biochemistry, 2022, 165, 108525.	8.8	6
3	Soil pore network response to freeze-thaw cycles in permafrost aggregates. Geoderma, 2022, 411, 115674.	5.1	30
4	Severe declines in hydraulic capacity and associated carbon starvation drive mortality in seawater exposed Sitka-spruce (Picea sitchensis) trees. Environmental Research Communications, 2022, 4, 035005.	2.3	4
5	Historically inconsistent productivity and respiration fluxes in the global terrestrial carbon cycle. Nature Communications, 2022, 13, 1733.	12.8	25
6	Disturbance legacies regulate coastal forest soil stability to changing salinity and inundation: A soil transplant experiment. Soil Biology and Biochemistry, 2022, 169, 108675.	8.8	6
7	The Impact of Freezeâ€Thaw History on Soil Carbon Response to Experimental Freezeâ€Thaw Cycles. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	7
8	The influence of increasing atmospheric <scp>CO₂</scp> , temperature, and vapor pressure deficit on seawaterâ€induced tree mortality. New Phytologist, 2022, 235, 1767-1779.	7.3	12
9	Declining carbohydrate content of Sitka-spruce treesdying from seawater exposure. Plant Physiology, 2021, 185, 1682-1696.	4.8	10
10	Antecedent conditions determine the biogeochemical response of coastal soils to seawater exposure. Soil Biology and Biochemistry, 2021, 153, 108104.	8.8	7
11	MetFish: a Metabolomics Pipeline for Studying Microbial Communities in Chemically Extreme Environments. MSystems, 2021, 6, e0105820.	3.8	5
12	Changes in carbon and nitrogen metabolism during seawater-induced mortality of Picea sitchensis trees. Tree Physiology, 2021, 41, 2326-2340.	3.1	8
13	Soil carbon dynamics during drying vs. rewetting: Importance of antecedent moisture conditions. Soil Biology and Biochemistry, 2021, 156, 108165.	8.8	30
14	Soil texture and environmental conditions influence the biogeochemical responses of soils to drought and flooding. Communications Earth & Environment, 2021, 2, .	6.8	35
15	Seawater exposure causes hydraulic damage in dying Sitka-spruce trees. Plant Physiology, 2021, 187, 873-885.	4.8	10
16	Micro on a macroscale: relating microbial-scale soil processes to global ecosystem function. FEMS Microbiology Ecology, 2021, 97, .	2.7	21
17	Spatial access and resource limitations control carbon mineralization in soils. Soil Biology and Biochemistry, 2021, 162, 108427.	8.8	7
18	Tree growth, transpiration, and water-use efficiency between shoreline and upland red maple (Acer) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf 5

VANESSA BAILEY

#	Article	IF	CITATIONS
19	Waterâ€dispersible nanocolloids and higher temperatures promote the release of carbon from riparian soil. Vadose Zone Journal, 2020, 19, e20077.	2.2	2
20	Representing the function and sensitivity of coastal interfaces in Earth system models. Nature Communications, 2020, 11, 2458.	12.8	153
21	What do we know about soil carbon destabilization?. Environmental Research Letters, 2019, 14, 083004.	5.2	106
22	Spatial gradients in the characteristics of soil-carbon fractions are associated with abiotic features but not microbial communities. Biogeosciences, 2019, 16, 3911-3928.	3.3	19
23	Longitudinal Gradients in Tree Stem Greenhouse Gas Concentrations Across Six Pacific Northwest Coastal Forests. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 1401-1412.	3.0	16
24	Constrained tree growth and gas exchange of seawaterâ€exposed forests in the Pacific Northwest, USA. Journal of Ecology, 2019, 107, 2541-2552.	4.0	21
25	Spatial distribution of prokaryotic communities in hypersaline soils. Scientific Reports, 2019, 9, 1769.	3.3	33
26	Temporal dynamics of CO2 and CH4 loss potentials in response to rapid hydrological shifts in tidal freshwater wetland soils. Ecological Engineering, 2018, 114, 104-114.	3.6	13
27	Soil carbon cycling proxies: Understanding their critical role in predicting climate change feedbacks. Global Change Biology, 2018, 24, 895-905.	9.5	61
28	A moisture function of soil heterotrophic respiration that incorporates microscale processes. Nature Communications, 2018, 9, 2562.	12.8	124
29	Globally rising soil heterotrophic respiration over recent decades. Nature, 2018, 560, 80-83.	27.8	360
30	Microscale water distribution and its effects on organic carbon decomposition in unsaturated soils. Science of the Total Environment, 2018, 644, 1036-1043.	8.0	12
31	Differences in soluble organic carbon chemistry in pore waters sampled from different pore size domains. Soil Biology and Biochemistry, 2017, 107, 133-143.	8.8	107
32	Shifts in pore connectivity from precipitation versus groundwater rewetting increases soil carbon loss after drought. Nature Communications, 2017, 8, 1335.	12.8	88
33	Multiscale Investigation on Biofilm Distribution and Its Impact on Macroscopic Biogeochemical Reaction Rates. Water Resources Research, 2017, 53, 8698-8714.	4.2	26
34	Temperature and moisture effects on greenhouse gas emissions from deep active-layer boreal soils. Biogeosciences, 2016, 13, 6669-6681.	3.3	22
35	Soil Respiration and Bacterial Structure and Function after 17 Years of a Reciprocal Soil Transplant Experiment. PLoS ONE, 2016, 11, e0150599.	2.5	60
36	Pore-scale investigation on the response of heterotrophic respiration to moisture conditions in heterogeneous soils. Biogeochemistry, 2016, 131, 121-134.	3.5	54

VANESSA BAILEY

#	Article	IF	CITATIONS
37	Moderate forest disturbance as a stringent test for gap and big-leaf models. Biogeosciences, 2015, 12, 513-526.	3.3	16
38	Management of Soil Biota and Their Processes. , 2015, , 539-572.		4
39	Simulations of ecosystem hydrological processes using a unified multi-scale model. Ecological Modelling, 2015, 296, 93-101.	2.5	10
40	A Unified Multiscale Model for Pore-ScaleFlow Simulations in Soils. Soil Science Society of America Journal, 2014, 78, 108-118.	2.2	23
41	Linking microbial community structure to β -glucosidic function in soil aggregates. ISME Journal, 2013, 7, 2044-2053.	9.8	110
42	Micrometer-scale physical structure and microbial composition of soil macroaggregates. Soil Biology and Biochemistry, 2013, 65, 60-68.	8.8	54
43	Biotic and Abiotic Reduction and Solubilization of Pu(IV)O2•xH2O(am) as Affected by Anthraquinone-2,6-disulfonate (AQDS) and Ethylenediaminetetraacetate (EDTA). Environmental Science & Technology, 2012, 46, 2132-2140.	10.0	20
44	Spectral signatures for the classification of microbial species using Raman spectra. Analytical and Bioanalytical Chemistry, 2012, 404, 563-572.	3.7	7
45	Modeling Microbial Dynamics in Heterogeneous Environments: Growth on Soil Carbon Sources. Microbial Ecology, 2012, 63, 883-897.	2.8	66
46	Measurements of microbial community activities in individual soil macroaggregates. Soil Biology and Biochemistry, 2012, 48, 192-195.	8.8	43
47	Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization. Soil Biology and Biochemistry, 2011, 43, 296-301.	8.8	351
48	Response of "Alamo―switchgrass tissue chemistry and biomass to nitrogen fertilization in West Tennessee, USA. Agriculture, Ecosystems and Environment, 2011, 140, 289-297.	5.3	42
49	Phospholipid fatty acid biomarkers in a freshwater periphyton community exposed to uranium: discovery by non-linear statistical learning. Journal of Environmental Radioactivity, 2011, 102, 64-71.	1.7	9
50	Intra-annual changes in biomass, carbon, and nitrogen dynamics at 4-year old switchgrass field trials in west Tennessee, USAâ~†. Agriculture, Ecosystems and Environment, 2010, 136, 177-184.	5.3	72
51	Direct detection of soil mRNAs using targeted microarrays for genes associated with lignin degradation. Soil Biology and Biochemistry, 2010, 42, 1793-1799.	8.8	4
52	The effect of young biochar on soil respiration. Soil Biology and Biochemistry, 2010, 42, 2345-2347.	8.8	444
53	Novelty and Uniqueness Patterns of Rare Members of the Soil Biosphere. Applied and Environmental Microbiology, 2008, 74, 5422-5428.	3.1	189
54	The initial rate of C substrate utilization and longer-term soil C storage. Biology and Fertility of Soils, 2007, 44, 315-320.	4.3	27

VANESSA BAILEY

#	Article	IF	CITATIONS
55	Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Climatic Change, 2007, 80, 5-23.	3.6	567
56	c-Type Cytochrome-Dependent Formation of U(IV) Nanoparticles by Shewanella oneidensis. PLoS Biology, 2006, 4, e268.	5.6	310
57	14C Cycling in lignocellulose-amended soils: predicting long-term C fate from short-term indicators. Biology and Fertility of Soils, 2006, 42, 198-206.	4.3	3
58	Distribution of two C cycle enzymes in soil aggregates of a prairie chronosequence. Biology and Fertility of Soils, 2005, 42, 17-23.	4.3	55
59	Enhancement of Carbon Sequestration in US Soils. BioScience, 2004, 54, 895.	4.9	138
60	Novel antibiotics as inhibitors for the selective respiratory inhibition method of measuring fungal:bacterial ratios in soil. Biology and Fertility of Soils, 2003, 38, 154-160.	4.3	68
61	Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration. Soil Biology and Biochemistry, 2002, 34, 997-1007.	8.8	474
62	Relationships between soil microbial biomass determined by chloroform fumigation–extraction, substrate-induced respiration, and phospholipid fatty acid analysis. Soil Biology and Biochemistry, 2002, 34, 1385-1389.	8.8	205
63	A practical method for assessing cadmium levels in soil using the DTPA extraction technique with graphite furnace analysis. Communications in Soil Science and Plant Analysis, 1995, 26, 961-968.	1.4	17