
Noriyuki Koibuchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3471802/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Developmental thyroid hormone disruption: Prevalence, environmental contaminants and neurodevelopmental consequences. NeuroToxicology, 2012, 33, 842-852.	1.4	171
2	Polychlorinated Biphenyls Suppress Thyroid Hormone Receptor-mediated Transcription through a Novel Mechanism. Journal of Biological Chemistry, 2004, 279, 18195-18202.	1.6	132
3	The Role of Thyroid Hormone on Cerebellar Development. Cerebellum, 2008, 7, 530-533.	1.4	70
4	Identification of the Functional Domain of Thyroid Hormone Receptor Responsible for Polychlorinated Biphenyl–Mediated Suppression of Its Action <i>in Vitro</i> . Environmental Health Perspectives, 2008, 116, 1231-1236.	2.8	53
5	The Effect of Perinatal Gadolinium-Based Contrast Agents on Adult Mice Behavior. Investigative Radiology, 2018, 53, 110-118.	3.5	50
6	RORα Augments Thyroid Hormone Receptor-Mediated Transcriptional Activation*. Endocrinology, 1999, 140, 1356-1364.	1.4	46
7	Effects of Mild Perinatal Hypothyroidism on Cognitive Function of Adult Male Offspring. Endocrinology, 2018, 159, 1910-1921.	1.4	33
8	The Role of Thyroid Hormone on Functional Organization in the Cerebellum. Cerebellum, 2013, 12, 304-306.	1.4	30
9	Augmentation of Thyroid Hormone Receptor-Mediated Transcription by Ca2+/Calmodulin-Dependent Protein Kinase Type IV. Endocrinology, 2000, 141, 2275-2278.	1.4	26
10	Effects of Gadolinium-Based Contrast Agents on Thyroid Hormone Receptor Action and Thyroid Hormone-Induced Cerebellar Purkinje Cell Morphogenesis. Frontiers in Endocrinology, 2016, 7, 115.	1.5	25
11	Aberrant Cerebellar Development in Mice Lacking Dual Oxidase Maturation Factors. Thyroid, 2016, 26, 741-752.	2.4	25
12	Suppression of thyroid hormone receptor-mediated transcription and disruption of thyroid hormone-induced cerebellar morphogenesis by the polybrominated biphenyl mixture, BP-6. NeuroToxicology, 2011, 32, 400-409.	1.4	24
13	Earlyâ€lifeâ€stress affects the homeostasis of glutamatergic synapses. European Journal of Neuroscience, 2014, 40, 3627-3634.	1.2	23
14	The Effects of Low-Dose Bisphenol A and Bisphenol F on Neural Differentiation of a Fetal Brain-Derived Neural Progenitor Cell Line. Frontiers in Endocrinology, 2018, 9, 24.	1.5	20
15	A Novel Mechanism of S-equol Action in Neurons and Astrocytes: The Possible Involvement of GPR30/GPER1. International Journal of Molecular Sciences, 2019, 20, 5178.	1.8	20
16	Organ retention of gadolinium in mother and pup mice: effect of pregnancy and type of gadolinium-based contrast agents. Japanese Journal of Radiology, 2017, 35, 568-573.	1.0	18
17	Soy Isoflavones Accelerate Glial Cell Migration via GPER-Mediated Signal Transduction Pathway. Frontiers in Endocrinology, 2020, 11, 554941.	1.5	18
18	The neurotoxic effect of lactational PFOS exposure on cerebellar functional development in male mice. Food and Chemical Toxicology, 2022, 159, 112751.	1.8	14

Noriyuki Koibuchi

#	Article	IF	CITATIONS
19	Alteration of somatosensory response in adulthood by early life stress. Frontiers in Molecular Neuroscience, 2015, 8, 15.	1.4	13
20	The Role of Thyroid Hormone in the Regulation of Cerebellar Development. Endocrinology and Metabolism, 2021, 36, 703-716.	1.3	12
21	Aberrant Cerebellar Neurotrophin-3 Expression Induced by Lipopolysaccharide Exposure During Brain Development. Cerebellum, 2013, 12, 316-318.	1.4	10
22	Localization by Immunohistochemistry of Renal Ornithine Decarboxylase in the Mouse with and without Testosterone Treatment Endocrinologia Japonica, 1990, 37, 555-561.	0.5	9
23	The Effects of Gadolinium-Based Contrast Agents on the Cerebellum: from Basic Research to Neurological Practice and from Pregnancy to Adulthood. Cerebellum, 2018, 17, 247-251.	1.4	8
24	Gadolinium-based contrast agent accelerates the migration of astrocyte via integrin αvβ3 signaling pathway. Scientific Reports, 2022, 12, 5850.	1.6	7
25	Electrical Stimulation of the Basolateral Amygdala Elicits Only Growth Hormone Secretion Among Six Anterior Pituitary Hormones in the Pentobarbital-Anesthetized Male Rat. Journal of Neuroendocrinology, 1991, 3, 685-687.	1.2	6
26	Impact of endocrine-disrupting chemicals on thyroid function and brain development. Expert Review of Endocrinology and Metabolism, 2014, 9, 579-591.	1.2	6
27	In Utero and Postnatal Propylthiouracil-Induced Mild Hypothyroidism Impairs Maternal Behavior in Mice. Frontiers in Endocrinology, 2018, 9, 228.	1.5	6
28	Thyroid hormone activated upper gastrointestinal motility without mediating gastrointestinal hormones in conscious dogs. Scientific Reports, 2021, 11, 9975.	1.6	5
29	Histone Deacetylase 3 Inhibitor Alleviates Cerebellar Defects in Perinatal Hypothyroid Mice by Stimulating Histone Acetylation and Transcription at Thyroid Hormone-Responsive Gene Loci. International Journal of Molecular Sciences, 2022, 23, 7869.	1.8	4
30	Electrical Stimulation of Specific Brainstem Nuclei Suppresses Growth Hormone-Releasing Hormone-Induced Growth Hormone Secretion in the Pentobarbital Anaesthetized Rat. Journal of Neuroendocrinology, 1989, 1, 209-214.	1.2	3
31	Chicken ovalbumin upstream promoter-transcription factor II protects against cisplatin-induced acute kidney injury. Endocrine Journal, 2020, 67, 283-293.	0.7	2
32	Secretory expression of thyroid hormone receptor using transgenic silkworms and its DNA binding activity. Protein Expression and Purification, 2020, 176, 105723.	0.6	1
33	The Role of Ferrous Ion in the Effect of the Gadolinium-Based Contrast Agents (GBCA) on the Purkinje Cells Arborization: An In Vitro Study. Diagnostics, 2021, 11, 2310.	1.3	1
34	COUP-TFII in Kidneys, from Embryos to Sick Adults. Diagnostics, 2022, 12, 1181.	1.3	1
35	NEURAL CIRCUITRIES RESPONSIBLE FOR THE REGULATION OF GROWTH HORMONE SECRETION IN THE RAT. The KITAKANTO Medical Journal, 1989, 39, 21-34.	0.0	0
36	Adultâ€onset hypothyroidism causes mechanical hypersensitivity due to peripheral nerve hyperexcitability based on voltageâ€gated potassium channel downregulation in male mice. Journal of Neuroscience Research, 2022, 100, 506-521.	1.3	0