
Valeriy V Krivetskiy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3471782/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Statistical shape analysis pre-processing of temperature modulated metal oxide gas sensor response for machine learning improved selectivity of gases detection in real atmospheric conditions. Sensors and Actuators B: Chemical, 2021, 329, 129187.	7.8	43
2	Microhotplates based on Pt and Pt-Rh films: The impact of composition, structure, and thermal treatment on functional properties. Sensors and Actuators A: Physical, 2021, 317, 112457.	4.1	15
3	Flame-Made La2O3-Based Nanocomposite CO2 Sensors as Perspective Part of GHG Monitoring System. Sensors, 2021, 21, 7297.	3.8	2
4	Metal Oxide Gas Sensors Signal Shape Processing for Selective Detection of Hydrocarbons in Realistic Air Conditions. ECS Meeting Abstracts, 2020, MA2020-01, 1860-1860.	0.0	1
5	Enhanced VOCs Detection By the Co3O4/ZnO Nanocomposites, Obtained By Single Step Flame Spray Pyrolysis. ECS Meeting Abstracts, 2020, MA2020-01, 2191-2191.	0.0	0
6	Ð;Ð͵Ͽ¼ϿÑ,Ðμз ульÑ,раÐϿ͵ÑÐ;ĐμÑ€ÑĐ½Đ¾Đ3Đ¾ ĐϿ͵Đ¾ĐºÑÐ͵ĐϿ° Đ¾Đ»Đ¾Đ2а Ñ€Đ°ÑĐ;Ň‹Ð›	»Ð҉Ӎ҇ӯ҈ѺµÐ»	ŇŒĐ½Ñ∢Đ

7	Light—Assisted Low Temperature Formaldehyde Detection at Sub-ppm Level Using Metal Oxide Semiconductor Gas Sensors. Proceedings (mdpi), 2019, 14, 37.	0.2	1
8	Selective Detection of Hydrocarbons in Real Atmospheric Conditions by Single MOX Sensor in Temperature Modulation Mode. Proceedings (mdpi), 2019, 14, .	0.2	1
9	Synergistic Effect of Nanocrystalline SnO2 Sensitization by Bimetallic Au and Pd Modification via Ingle Step Flame Spray Pyrolysis Technique. Proceedings (mdpi), 2019, 14, 46.	0.2	0
10	Enhancement of Lewis Acidity of Crâ€Doped Nanocrystalline SnO ₂ : Effect on Surface NH ₃ Oxidation and Sensory Detection Pattern. ChemPhysChem, 2019, 20, 1985-1996.	2.1	9
11	Effect of AuPd Bimetal Sensitization on Gas Sensing Performance of Nanocrystalline SnO2 Obtained by Single Step Flame Spray Pyrolysis. Nanomaterials, 2019, 9, 728.	4.1	31
12	Study of the Chromium Distribution in New Materials Based on Tin Dioxide by Inductively Coupled Plasma–Mass Spectrometry. Moscow University Chemistry Bulletin, 2019, 74, 10-13.	0.6	1
13	Nanocomposites SnO2/SiO2 for CO Gas Sensors: Microstructure and Reactivity in the Interaction with the Gas Phase. Materials, 2019, 12, 1096.	2.9	22
14	Selective detection of individual gases and CO/H2 mixture at low concentrations in air by single semiconductor metal oxide sensors working in dynamic temperature mode. Sensors and Actuators B: Chemical, 2018, 254, 502-513.	7.8	61
15	Influence of Mono- and Bimetallic PtOx, PdOx, PtPdOx Clusters on CO Sensing by SnO2 Based Gas Sensors. Nanomaterials, 2018, 8, 917.	4.1	22
16	Chemically modified nanocrystalline SnO2-based materials for nitrogen-containing gases detection using gas sensor array. Journal of Alloys and Compounds, 2017, 691, 514-523.	5.5	27
17	Co3O4 as p-Type Material for CO Sensing in Humid Air. Sensors, 2017, 17, 2216.	3.8	51

VALERIY V KRIVETSKIY

#	Article	IF	CITATIONS
19	Influence of La(III) on the reactivity and sensor properties of nanocrystalline SnO2. Russian Journal of Inorganic Chemistry, 2016, 61, 1368-1373.	1.3	1
20	Chemical modification of nanocrystalline tin dioxide for selective gas sensors. Russian Chemical Reviews, 2013, 82, 917-941.	6.5	72
21	Semiconductor gas sensing coupled with presampling system for toxic compounds and chemical threat agents detection. , 2013, , .		3
22	Combination of tailored acid-base and red/ox properties of nanocrystalline SnO <inf>2</inf> for optimal gas sensor performance: Principle applicability study on NH <inf>3</inf> and H <inf>2</inf> S examples. , 2013, , .		0
23	Design, Synthesis and Application of Metal Oxide-Based Sensing Elements: A Chemical Principles Approach. , 2013, , 69-115.		9
24	Catalytic impact of RuOx clusters to high ammonia sensitivity of tin dioxide. Sensors and Actuators B: Chemical, 2012, 175, 186-193.	7.8	24
25	Catalytic impact of RuOx clusters to high NH3 sensitivity of tin dioxide. Procedia Engineering, 2011, 25, 227-230.	1.2	3
26	Selectivity Modification of SnO ₂ â€Based Materials for Gas Sensor Arrays. Electroanalysis, 2010, 22, 2809-2816.	2.9	53
27	Materials based on modified SnO2 for selective gas sensors. Inorganic Materials, 2010, 46, 1100-1105.	0.8	14
28	Selective modified SnO2-based materials for gas sensors arrays. Procedia Chemistry, 2009, 1, 204-207.	0.7	19
29	A simple method of growth and lithiation of Ba6Mn24O48 whiskers. Journal of Materials Chemistry, 2005, 15, 1614.	6.7	25