
Qiuan Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3471147/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The global methane budget 2000–2012. Earth System Science Data, 2016, 8, 697-751.	9.9	824
2	A drought-induced pervasive increase in tree mortality across Canada's boreal forests. Nature Climate Change, 2011, 1, 467-471.	18.8	653
3	The Global N2O Model Intercomparison Project. Bulletin of the American Meteorological Society, 2018, 99, 1231-1251.	3.3	123
4	The carbon stock of alpine peatlands on the Qinghai–Tibetan Plateau during the Holocene and their future fate. Quaternary Science Reviews, 2014, 95, 151-158.	3.0	118
5	The carbon flux of global rivers: A re-evaluation of amount and spatial patterns. Ecological Indicators, 2017, 80, 40-51.	6.3	106
6	A global meta-analysis of changes in soil carbon, nitrogen, phosphorus and sulfur, and stor store store store store store and soil, 2016, 407, 323-340.	3.7	87
7	Quantification of methane emissions from municipal solid waste landfills in China during the past decade. Renewable and Sustainable Energy Reviews, 2017, 78, 272-279.	16.4	77
8	Dynamics of vegetation autumn phenology and its response to multiple environmental factors from 1982 to 2012 on Qinghai-Tibetan Plateau in China. Science of the Total Environment, 2018, 637-638, 855-864.	8.0	76
9	Modelling the impacts of climate and land use changes on soil water erosion: Model applications, limitations and future challenges. Journal of Environmental Management, 2019, 250, 109403.	7.8	76
10	<i>p</i> CO ₂ and CO ₂ fluxes of the metropolitan river network in relation to the urbanization of Chongqing, China. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 470-486.	3.0	71
11	Quantification of provincial-level carbon emissions from energy consumption in China. Renewable and Sustainable Energy Reviews, 2011, 15, 3658-3668.	16.4	65
12	Model prediction of biomeâ€ s pecific global soil respiration from 1960 to 2012. Earth's Future, 2017, 5, 715-729.	6.3	60
13	Field-experiment constraints on the enhancement of the terrestrial carbon sink by CO2 fertilization. Nature Geoscience, 2019, 12, 809-814.	12.9	58
14	Estimating global natural wetland methane emissions using process modelling: spatioâ€ŧemporal patterns and contributions to atmospheric methane fluctuations. Global Ecology and Biogeography, 2015, 24, 959-972.	5.8	53
15	Rainfall manipulation experiments as simulated by terrestrial biosphere models: Where do we stand?. Global Change Biology, 2020, 26, 3336-3355.	9.5	50
16	Carbon dynamics of peatlands in China during the Holocene. Quaternary Science Reviews, 2014, 99, 34-41.	3.0	49
17	Modeling Global Soil Carbon and Soil Microbial Carbon by Integrating Microbial Processes into the Ecosystem Process Model <scp>TRIPLEXâ€GHG</scp> . Journal of Advances in Modeling Earth Systems, 2017, 9, 2368-2384.	3.8	47
18	The significant contribution of lake depth in regulating global lake diffusive methane emissions. Water Research, 2020, 172, 115465.	11.3	47

QIUAN ZHU

#	Article	IF	CITATIONS
19	Quantification of soil respiration in forest ecosystems across China. Atmospheric Environment, 2014, 94, 546-551.	4.1	42
20	Qinghai–tibetan plateau peatland sustainable utilization under anthropogenic disturbances and climate change. Ecosystem Health and Sustainability, 2017, 3, .	3.1	40
21	Vegetation Functional Properties Determine Uncertainty of Simulated Ecosystem Productivity: A Traceability Analysis in the East Asian Monsoon Region. Global Biogeochemical Cycles, 2019, 33, 668-689.	4.9	38
22	Estimates and Predictions of Methane Emissions from Wastewater in China from 2000 to 2020. Earth's Future, 2018, 6, 252-263.	6.3	37
23	Quantification of the response of global terrestrial net primary production to multifactor global change. Ecological Indicators, 2017, 76, 245-255.	6.3	36
24	Spatial and temporal variations of N2O emissions from global forest and grassland ecosystems. Agricultural and Forest Meteorology, 2019, 266-267, 129-139.	4.8	36
25	Uncertainty analysis of terrestrial net primary productivity and net biome productivity in China during 1901–2005. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1372-1393.	3.0	35
26	Modeling Global Riverine DOC Flux Dynamics From 1951 to 2015. Journal of Advances in Modeling Earth Systems, 2019, 11, 514-530.	3.8	34
27	Responses of peat carbon at different depths to simulated warming and oxidizing. Science of the Total Environment, 2016, 548-549, 429-440.	8.0	32
28	Global response of terrestrial gross primary productivity to climate extremes. Science of the Total Environment, 2021, 750, 142337.	8.0	32
29	Soil properties and species composition under different grazing intensity in an alpine meadow on the eastern Tibetan Plateau, China. Environmental Monitoring and Assessment, 2016, 188, 678.	2.7	31
30	Quantification and scenario analysis of CO2 emissions from the central heating supply system in China from 2006 to 2025. Applied Energy, 2018, 225, 869-875.	10.1	31
31	Interannual variation in methane emissions from tropical wetlands triggered by repeated El Niño Southern Oscillation. Global Change Biology, 2017, 23, 4706-4716.	9.5	28
32	Combined control of multiple extreme climate stressors on autumn vegetation phenology on the Tibetan Plateau under past and future climate change. Agricultural and Forest Meteorology, 2021, 308-309, 108571.	4.8	24
33	Five‥ear Measurements of Net Ecosystem CO ₂ Exchange at a Fen in the Zoige Peatlands on the Qinghaiâ€Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2019, 124, 11803-11818.	3.3	22
34	Structural and functional differentiation of the microbial community in the surface and subsurface peat of two minerotrophic fens in China. Plant and Soil, 2019, 437, 21-40.	3.7	22
35	Hydrologic Response to Land Use and Land Cover Changes within the Context of Catchment-Scale Spatial Information. Journal of Hydrologic Engineering - ASCE, 2013, 18, 1539-1548.	1.9	21
36	Comparative analyses of different biogenic CO2 emission accounting systems in life cycle assessment. Science of the Total Environment, 2019, 652, 1456-1462.	8.0	20

QIUAN ZHU

#	Article	IF	CITATIONS
37	A novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China. Scientific Reports, 2016, 6, 24110.	3.3	19
38	Assessment of frozen ground organic carbon pool on the Qinghai-Tibet Plateau. Journal of Soils and Sediments, 2019, 19, 128-139.	3.0	18
39	Spatial patterns of leaf δ ¹³ C and its relationship with plant functional groups and environmental factors in China. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 1564-1575.	3.0	17
40	The Spatial and Temporal Distribution of Dissolved Organic Carbon Exported from Three Chinese Rivers to the China Sea. PLoS ONE, 2016, 11, e0165039.	2.5	17
41	Global vegetation biomass production efficiency constrained by models and observations. Global Change Biology, 2020, 26, 1474-1484.	9.5	15
42	Effects of enclosure time on the community composition of methanotrophs in the soils of the Inner Mongolia grasslands. Journal of Soils and Sediments, 2016, 16, 1022-1031.	3.0	14
43	Processâ€based <scp>TRIPLEXâ€GHG</scp> model for simulating <scp>N</scp> ₂ <scp>O</scp> emissions from global forests and grasslands: <scp>M</scp> odel development and evaluation. Journal of Advances in Modeling Earth Systems, 2017, 9, 2079-2102.	3.8	14
44	Towards a paradigm for open and free sharing of scientific data on global change science in china. Ecosystem Health and Sustainability, 2016, 2, .	3.1	13
45	Climate-driven increase of natural wetland methane emissions offset by human-induced wetland reduction in China over the past three decades. Scientific Reports, 2016, 6, 38020.	3.3	13
46	Simulated effects of nitrogen saturation on the global carbon budget using the IBIS model. Scientific Reports, 2016, 6, 39173.	3.3	13
47	Assessment of biomass utilization potential of <i>Caragana korshinskii</i> and its effect on carbon sequestration on the Northern Shaanxi Loess Plateau, China. Land Degradation and Development, 2020, 31, 53-64.	3.9	13
48	Allocation Mechanisms of Non-Structural Carbohydrates of Robinia pseudoacacia L. Seedlings in Response to Drought and Waterlogging. Forests, 2018, 9, 754.	2.1	12
49	Analysis of vegetation dynamics and climatic variability impacts on greenness across Canada using remotely sensed data from 2000 to 2009. Journal of Applied Remote Sensing, 2014, 8, 083666.	1.3	11
50	Trait-Based Climate Change Predictions of Vegetation Sensitivity and Distribution in China. Frontiers in Plant Science, 2019, 10, 908.	3.6	11
51	High uncertainties detected in the wetlands distribution of the Qinghai–Tibet Plateau based on multisource data. Landscape and Ecological Engineering, 2020, 16, 47-61.	1.5	11
52	Integrating a model with remote sensing observations by a data assimilation approach to improve the model simulation accuracy of carbon flux and evapotranspiration at two flux sites. Science China Earth Sciences, 2016, 59, 337-348.	5.2	9
53	Long-term changes in tree basal area across the boreal zone, Canada. Ecoscience, 2014, 21, 232-241.	1.4	5
54	Holocene peatland development and carbon stock of Zoige peatlands, Tibetan Plateau: a modeling approach. Journal of Soils and Sediments, 2018, 18, 2032-2043.	3.0	5

QIUAN ZHU

#	ARTICLE	IF	CITATIONS
55	Changes in soil organic carbon and microbial carbon storage projected during the 21st century using TRIPLEX-MICROBE. Ecological Indicators, 2019, 98, 80-87.	6.3	5
56	Application of machine learning methods for paleoclimatic reconstructions from leaf traits. International Journal of Climatology, 2021, 41, E3249.	3.5	5
57	Evaluation of Future Impacts of Climate Change, CO2, and Land Use Cover Change on Global Net Primary Productivity Using a Processed Model. Land, 2021, 10, 365.	2.9	5
58	Nitrous oxide emissions from three temperate forest types in the Qinling Mountains, China. Journal of Forestry Research, 2019, 30, 1417-1427.	3.6	4
59	Monitoring the impact of aerosol contamination on the drought-induced decline of gross primary productivity. International Journal of Applied Earth Observation and Geoinformation, 2015, 36, 30-40.	2.8	3
60	Extrapolation and Uncertainty Evaluation of Carbon Dioxide and Methane Emissions in the Qinghai-Tibetan Plateau Wetlands Since the 1960s. Frontiers in Earth Science, 2020, 8, .	1.8	3
61	Estimating natural nitrous oxide emissions from the Qinghai–Tibetan Plateau using a process-based model: Historical spatiotemporal patterns and future trends. Ecological Modelling, 2022, 466, 109902.	2.5	3
62	Assessing the spatio-temporal variation and uncertainty patterns of historical and future projected water resources in China. Journal of Water and Climate Change, 2013, 4, 302-316.	2.9	1
63	Temporal and Spatial Variation of Wetland CH4 Emissions from the Qinghai–Tibet Plateau under Future Climate Change Scenarios. Atmosphere, 2022, 13, 854.	2.3	1
64	Contribution of the Order Ericales to Improving Paleoclimate Reconstructions. Sustainability, 2022, 14, 4008.	3.2	0
65	Contribution of Incorporating the Phosphorus Cycle into TRIPLEX-CNP to Improve the Quantification of Land Carbon Cycle. Land, 2022, 11, 778.	2.9	0