Javier Aldazabal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3471106/publications.pdf Version: 2024-02-01

INVIED ALDAZABAL

#	Article	IF	CITATIONS
1	Gelatin Blends Enhance Performance of Electrospun Polymeric Scaffolds in Comparison to Coating Protocols. Polymers, 2022, 14, 1311.	4.5	16
2	Influence of the Laser Deposited 316L Single Layers on Corrosion in Physiological Media. Metals, 2022, 12, 1047.	2.3	0
3	Three-Dimensional Bioprinting Scaffolding for Nasal Cartilage Defects: A Systematic Review. Tissue Engineering and Regenerative Medicine, 2021, 18, 343-353.	3.7	15
4	Molecular and Cellular Mechanisms of Delayed Fracture Healing in <i>Mmp10</i> (Stromelysin 2) Knockout Mice. Journal of Bone and Mineral Research, 2021, 36, 2203-2213.	2.8	5
5	Murine femur micro-computed tomography and biomechanical datasets for an ovariectomy-induced osteoporosis model. Scientific Data, 2021, 8, 240.	5.3	7
6	Modelización por diferencias finitas aplicada a la interpretación del agrietamiento asistido por hidrógeno utilizando ensayos virtuales de tracción a baja velocidad de deformación. Revista De Metalurgia, 2021, 57, e198.	0.5	0
7	Plastically-Induced Volume Deformation of Nanocrystalline α-Fe with a <110> Columnar Structure. Metals, 2020, 10, 1649.	2.3	0
8	Hydrogen Assisted Fracture of 30MnB5 High Strength Steel: A Case Study. Metals, 2020, 10, 1613.	2.3	3
9	A comparison of the structure and mechanical properties of commercially pure tungsten rolled plates for the target of the European spallation source. International Journal of Refractory Metals and Hard Materials, 2018, 70, 45-55.	3.8	1
10	Elasto-plastic behaviour of a columnar structure of nanocrystalline iron with sharp ã€^011〉 fibre texture. Materialia, 2018, 2, 218-230.	2.7	4
11	Hydrogen Embrittlement Susceptibility of R4 and R5 High-Strength Mooring Steels in Cold and Warm Seawater. Metals, 2018, 8, 700.	2.3	9
12	Mechanical and Microstructural Features of Plasma Cut Edges in a 15 mm Thick S460M Steel Plate. Metals, 2018, 8, 447.	2.3	9
13	Fatigue Behavior of High Strength Steel S890Q Containing Thermally Cut Straight Edges. Procedia Engineering, 2016, 160, 246-253.	1.2	1
14	Characterization of heat affected zones produced by thermal cutting processes by means of Small Punch tests. Materials Characterization, 2016, 119, 55-64.	4.4	16
15	Atomistic simulation of the elongation response of a <011> oriented columnar nano-grain bcc Fe polycrystalline sample. Meccanica, 2016, 51, 401-413.	2.0	4
16	Definition and validation of Eurocode 3 FAT classes for structural steels containing oxy-fuel, plasma and laser cut holes. International Journal of Fatigue, 2016, 87, 50-58.	5.7	17
17	Strengthening by intermetallic nanoprecipitation in Fe–Cr–Al–Ti alloy. Acta Materialia, 2016, 107, 27-37.	7.9	20
18	Fatigue behaviour of structural steels with oxy-fuel, plasma and laser cut straight edges. Definition of Eurocode 3 FAT classes. Engineering Structures, 2016, 111, 152-161.	5.3	13

JAVIER ALDAZABAL

#	Article	IF	CITATIONS
19	Fatigue Performance of Thermally Cut Bolt Holes in Structural Steel S460M. Procedia Engineering, 2015, 133, 590-602.	1.2	12
20	Couple stresses and the fracture of rock. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140120.	3.4	4
21	Resilience and ductility of Oxy-fuel HAZ cut. Frattura Ed Integrita Strutturale, 2014, 8, 14-22.	0.9	6
22	Rational Design of Artificial Cellular Niches for Tissue Engineering. Computational Methods in Applied Sciences (Springer), 2014, , 129-147.	0.3	2
23	Advanced FeCrAl ODS steels for high-temperature structural applications in energy generation systems. Revista De Metalurgia, 2012, 48, 303-316.	0.5	19
24	Diffusional Monte Carlo model of liquid-phase sintering. Mathematics and Computers in Simulation, 2011, 81, 2564-2580.	4.4	5
25	Computer Simulation of Scaffold Degradation. Journal of Physics: Conference Series, 2010, 252, 012004.	0.4	8
26	Geometrical Monte Carlo model of liquid-phase sintering. Mathematics and Computers in Simulation, 2010, 80, 1469-1486.	4.4	11
27	Plastic deformation by conservative shear-coupled migration of tilt boundaries with intergranular nano-cracks or precipitates. Philosophical Magazine, 2010, 90, 3743-3756.	1.6	5
28	Size Effect in the Shear-Coupled Migration of Grain Boundaries Pinned by Triple Junctions. Materials Research Society Symposia Proceedings, 2009, 1224, 1.	0.1	0
29	Mode II loading behaviour of intergranular cracks lying on al̂£17(530)/[001] symmetrical tilt boundary in copper. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 2107-2112.	0.8	2
30	Diffusion simulation of Cr-Fe bcc systems at atomic level using a random walk algorithm. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 1337-1342.	1.8	6
31	Molecular dynamics simulation of crack tip blunting in opposing directions along a symmetrical tilt grain boundary of copper bicrystal. Fatigue and Fracture of Engineering Materials and Structures, 2007, 30, 1008-1015.	3.4	21
32	Deterministic model for ice cream solidification. Computational Materials Science, 2006, 38, 9-21.	3.0	6
33	Simulation of V(CN) Precipitation in Steels Allowing for Local Concentration Fluctuations. Materials Transactions, 2006, 47, 2732-2736.	1.2	3
34	Atomistic simulation of tensile strength and toughness of cracked Cu nanowires. Fatigue and Fracture of Engineering Materials and Structures, 2006, 29, 615-622.	3.4	17
35	Simulation of the microstructural evolution during liquid phase sintering using a geometrical Monte Carlo model. Modelling and Simulation in Materials Science and Engineering, 2005, 13, 1057-1070.	2.0	14
36	Computer Simulation of C-N-V Precipitates Evolution Based on Local Concentration Fluctuations. Materials Science Forum, 2005, 500-501, 719-728.	0.3	3

JAVIER ALDAZABAL

#	Article	IF	CITATIONS
37	Ductilization of nanocrystalline materials for structural applications. Scripta Materialia, 2004, 51, 795-800.	5.2	71
38	Simulation of liquid phase sintering using the Monte Carlo method. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 365, 151-155.	5.6	20
39	Hall–Petch behaviour induced by plastic strain gradients. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 365, 186-190.	5.6	27
40	A mesoscopic plasticity model accounting for spatial fluctuations of plastic strains, internal stresses and dislocation densities. International Journal of Materials Research, 2002, 93, 681-688.	0.8	3
41	Contractile force assessment methods for in vitro skeletal muscle tissues. ELife, 0, 11, .	6.0	11