
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3470797/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | In situ graphene oxide-gelatin hydrogels with enhanced mechanical property for tissue adhesive and regeneration. Biochemical and Biophysical Research Communications, 2022, 592, 24-30.                                       | 1.0 | 17        |
| 2  | Injectable gelatin-poly(ethylene glycol) adhesive hydrogels with highly hemostatic and wound healing capabilities. Journal of Industrial and Engineering Chemistry, 2022, 109, 372-383.                                       | 2.9 | 4         |
| 3  | A Comparative Study of Enzyme-Mediated Crosslinking of Catechol- and Phenol-Functionalized<br>Tetronic Hydrogels. Macromolecular Research, 2022, 30, 190-197.                                                                 | 1.0 | 6         |
| 4  | In situ forming gelatin: Cyclodextrin hydrogels prepared by "click chemistry―to improve the sustained<br>release of hydrophobic drugs. Journal of Bioactive and Compatible Polymers, 2022, 37, 252-266.                       | 0.8 | 3         |
| 5  | The Physicochemical and Antifungal Properties of Eco-friendly Silver Nanoparticles Synthesized by<br>Psidium guajava Leaf Extract in the Comparison With Tamarindus indica. Journal of Cluster Science,<br>2021, 32, 601-611. | 1.7 | 9         |
| 6  | Multifunctional surfaces through synergistic effects of heparin and nitric oxide release for a highly efficient treatment of blood-contacting devices. Journal of Controlled Release, 2021, 329, 401-412.                     | 4.8 | 10        |
| 7  | Lipid-Based Nanoparticles in the Clinic and Clinical Trials: From Cancer Nanomedicine to COVID-19<br>Vaccines. Vaccines, 2021, 9, 359.                                                                                        | 2.1 | 222       |
| 8  | Three-Dimensional Printable Gelatin Hydrogels Incorporating Graphene Oxide to Enable Spontaneous<br>Myogenic Differentiation. ACS Macro Letters, 2021, 10, 426-432.                                                           | 2.3 | 34        |
| 9  | Tunable and high tissue adhesive properties of injectable chitosan based hydrogels through polymer architecture modulation. Carbohydrate Polymers, 2021, 261, 117810.                                                         | 5.1 | 33        |
| 10 | Supramolecular Gels Incorporating Cordyline terminalis Leaf Extract as a Polyphenol Release<br>Scaffold for Biomedical Applications. International Journal of Molecular Sciences, 2021, 22, 8759.                             | 1.8 | 3         |
| 11 | Self-antibacterial chitosan/Aloe barbadensis Miller hydrogels releasing nitrite for biomedical applications. Journal of Industrial and Engineering Chemistry, 2021, 103, 175-186.                                             | 2.9 | 9         |
| 12 | Tonsil-derived mesenchymal stem cells incorporated in reactive oxygen species-releasing hydrogel promote bone formation by increasing the translocation of cell surface GRP78. Biomaterials, 2021, 278, 121156.               | 5.7 | 8         |
| 13 | Garcinia mangostana Shell and Tradescantia spathacea Leaf Extract- Mediated One-pot Synthesis of<br>Silver Nanoparticles with Effective Antifungal Properties. Current Nanoscience, 2021, 17, 762-771.                        | 0.7 | 2         |
| 14 | Horseradish peroxidase-catalyzed hydrogelation of fish gelatin with tunable mechanical properties and biocompatibility. Journal of Biomaterials Applications, 2020, 34, 1216-1226.                                            | 1.2 | 9         |
| 15 | Enzymatically Crosslinkable Hyaluronic Acid-Gelatin Hybrid Hydrogels as Potential Bioinks for Tissue<br>Regeneration. Macromolecular Research, 2020, 28, 400-406.                                                             | 1.0 | 29        |
| 16 | In situ forming and reactive oxygen species-scavenging gelatin hydrogels for enhancing wound healing efficacy. Acta Biomaterialia, 2020, 103, 142-152.                                                                        | 4.1 | 154       |
| 17 | Calcium peroxide-mediated <i>in situ</i> formation of multifunctional hydrogels with enhanced<br>mesenchymal stem cell behaviors and antibacterial properties. Journal of Materials Chemistry B, 2020,<br>8, 11033-11043.     | 2.9 | 23        |
| 18 | Novel enzymatically crosslinked chitosan hydrogels with free-radical-scavenging property and<br>promoted cellular behaviors under hyperglycemia. Progress in Natural Science: Materials<br>International, 2020, 30, 661-668.  | 1.8 | 25        |

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Comparison of biogenic silver nanoparticles formed by Momordica charantia and Psidium guajava leaf<br>extract and antifungal evaluation. PLoS ONE, 2020, 15, e0239360.                             | 1.1 | 25        |
| 20 | Engineered Heterochronic Parabiosis in 3D Microphysiological System for Identification of Muscle<br>Rejuvenating Factors. Advanced Functional Materials, 2020, 30, 2002924.                        | 7.8 | 5         |
| 21 | A comprehensive review on polymeric hydrogel and its composite: Matrices of choice for bone and cartilage tissue engineering. Journal of Industrial and Engineering Chemistry, 2020, 89, 58-82.    | 2.9 | 61        |
| 22 | Decellularized Porcine Epiphyseal Plate-Derived Extracellular Matrix Powder: Synthesis and Characterization. Cells Tissues Organs, 2020, 209, 101-109.                                             | 1.3 | 4         |
| 23 | Green Silver Nanoparticles Formed by Phyllanthus urinaria, Pouzolzia zeylanica, and Scoparia dulcis<br>Leaf Extracts and the Antifungal Activity. Nanomaterials, 2020, 10, 542.                    | 1.9 | 60        |
| 24 | MSC-Encapsulating in Situ Cross-Linkable Gelatin Hydrogels To Promote Myocardial Repair. ACS<br>Applied Bio Materials, 2020, 3, 1646-1655.                                                         | 2.3 | 18        |
| 25 | Self-Assemblable Polymer Smart-Blocks for Temperature-Induced Injectable Hydrogel in Biomedical<br>Applications. Frontiers in Chemistry, 2020, 8, 19.                                              | 1.8 | 27        |
| 26 | The Importance of Poly(ethylene glycol) Alternatives for Overcoming PEG Immunogenicity in Drug Delivery and Bioconjugation. Polymers, 2020, 12, 298.                                               | 2.0 | 384       |
| 27 | Silver Nanoparticles Ecofriendly Synthesized by Achyranthes aspera and Scoparia dulcis Leaf Broth as<br>an Effective Fungicide. Applied Sciences (Switzerland), 2020, 10, 2505.                    | 1.3 | 20        |
| 28 | Effective Elimination of Charge-associated Toxicity of Low Generation Polyamidoamine Dendrimer<br>Eases Drug Delivery of Oxaliplatin. Biotechnology and Bioprocess Engineering, 2020, 25, 224-234. | 1.4 | 7         |
| 29 | Evaluation of saponin-rich/poor leaf extract-mediated silver nanoparticles and their antifungal capacity. Green Processing and Synthesis, 2020, 9, 429-439.                                        | 1.3 | 12        |
| 30 | Soy Lecithin-Derived Liposomal Delivery Systems: Surface Modification and Current Applications.<br>International Journal of Molecular Sciences, 2019, 20, 4706.                                    | 1.8 | 63        |
| 31 | Functionalized mesoporous silica nanoparticles and biomedical applications. Materials Science and Engineering C, 2019, 99, 631-656.                                                                | 3.8 | 133       |
| 32 | Partial Surface Modification of Low Generation Polyamidoamine Dendrimers: Gaining Insight into their Potential for Improved Carboplatin Delivery. Biomolecules, 2019, 9, 214.                      | 1.8 | 21        |
| 33 | Graphene oxide immobilized surfaces facilitate the sustained release of doxycycline for the prevention of implant related infection. Colloids and Surfaces B: Biointerfaces, 2019, 181, 576-584.   | 2.5 | 14        |
| 34 | Engineered horseradish peroxidase-catalyzed hydrogels with high tissue adhesiveness for biomedical applications. Journal of Industrial and Engineering Chemistry, 2019, 78, 34-52.                 | 2.9 | 47        |
| 35 | Oxidized Alginate Supplemented Gelatin Hydrogels for the In Situ Formation of Wound Dressing with<br>High Antibacterial Activity. Macromolecular Research, 2019, 27, 811-820.                      | 1.0 | 16        |
| 36 | Origanum majorana L. Essential Oil-Associated Polymeric Nano Dendrimer for Antifungal Activity<br>against Phytophthora infestans. Materials, 2019, 12, 1446.                                       | 1.3 | 29        |

| #  | Article                                                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Preparation and characterization of oxaliplatin drug delivery vehicle based on PEGylated half-generation PAMAM dendrimer. Journal of Polymer Research, 2019, 26, 1.                                                                                                                                | 1.2 | 19        |
| 38 | Modified Carboxyl-Terminated PAMAM Dendrimers as Great Cytocompatible Nano-Based Drug Delivery<br>System. International Journal of Molecular Sciences, 2019, 20, 2016.                                                                                                                             | 1.8 | 35        |
| 39 | Functional Magnetic Core-Shell System-Based Iron Oxide Nanoparticle Coated with Biocompatible<br>Copolymer for Anticancer Drug Delivery. Pharmaceutics, 2019, 11, 120.                                                                                                                             | 2.0 | 44        |
| 40 | Evaluation of Factors Affecting Antimicrobial Activity of Bacteriocin from Lactobacillus plantarum<br>Microencapsulated in Alginate-Gelatin Capsules and Its Application on Pork Meat as a Bio-Preservative.<br>International Journal of Environmental Research and Public Health, 2019, 16, 1017. | 1.2 | 28        |
| 41 | Supramolecular assembly of tetronic–adamantane and poly(β-cyclodextrin) as injectable<br>shear-thinning hydrogels. Journal of Materials Chemistry B, 2019, 7, 3374-3382.                                                                                                                           | 2.9 | 43        |
| 42 | PEGylated PAMAM dendrimers loading oxaliplatin with prolonged release and high payload without burst effect. Biopolymers, 2019, 110, e23272.                                                                                                                                                       | 1.2 | 19        |
| 43 | PEGylated poly(amidoamine) dendrimers-based drug loading vehicles for delivering carboplatin in treatment of various cancerous cells. Journal of Nanoparticle Research, 2019, 21, 1.                                                                                                               | 0.8 | 16        |
| 44 | Human hair keratin-based hydrogels as dynamic matrices for facilitating wound healing. Journal of<br>Industrial and Engineering Chemistry, 2019, 73, 142-151.                                                                                                                                      | 2.9 | 42        |
| 45 | Recent Progress and Advances of Multi-Stimuli-Responsive Dendrimers in Drug Delivery for Cancer<br>Treatment. Pharmaceutics, 2019, 11, 591.                                                                                                                                                        | 2.0 | 56        |
| 46 | Oxygen-generating alginate hydrogels as a bioactive acellular matrix for facilitating wound healing.<br>Journal of Industrial and Engineering Chemistry, 2019, 69, 397-404.                                                                                                                        | 2.9 | 64        |
| 47 | Nitric oxide-releasing injectable hydrogels with high antibacterial activity through in situ formation of peroxynitrite. Acta Biomaterialia, 2018, 67, 66-78.                                                                                                                                      | 4.1 | 75        |
| 48 | Hydrogen Peroxide–Releasing Hydrogels for Enhanced Endothelial Cell Activities and<br>Neovascularization. ACS Applied Materials & Interfaces, 2018, 10, 18372-18379.                                                                                                                               | 4.0 | 38        |
| 49 | Sustained release of parathyroid hormone via <i>in situ</i> crossâ€linking gelatin hydrogels improves the therapeutic potential of tonsilâ€derived mesenchymal stem cells for hypoparathyroidism. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1747-e1756.                  | 1.3 | 14        |
| 50 | A novel calciumâ€accumulating peptide/gelatin <i>in situ</i> forming hydrogel for enhanced bone<br>regeneration. Journal of Biomedical Materials Research - Part A, 2018, 106, 531-542.                                                                                                            | 2.1 | 16        |
| 51 | Enhanced tissue adhesiveness of injectable gelatin hydrogels through dual catalytic activity of horseradish peroxidase. Biopolymers, 2018, 109, e23077.                                                                                                                                            | 1.2 | 26        |
| 52 | Microneedle Vascular Couplers with Heparin-Immobilized Surface Improve Suture-Free Anastomosis<br>Performance. ACS Biomaterials Science and Engineering, 2018, 4, 3848-3853.                                                                                                                       | 2.6 | 4         |
| 53 | In Situ Cross-Linkable Hydrogels as a Dynamic Matrix for Tissue Regenerative Medicine. Tissue<br>Engineering and Regenerative Medicine, 2018, 15, 547-557.                                                                                                                                         | 1.6 | 29        |
| 54 | Enhanced articular cartilage regeneration with SIRT1-activated MSCs using gelatin-based hydrogel.<br>Cell Death and Disease, 2018, 9, 866.                                                                                                                                                         | 2.7 | 18        |

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Tonsil-derived mesenchymal stem cell-embedded in situ crosslinkable gelatin hydrogel therapy recovers postmenopausal osteoporosis through bone regeneration. PLoS ONE, 2018, 13, e0200111.                                                   | 1.1 | 21        |
| 56 | Catechol-rich gelatin hydrogels in situ hybridizations with silver nanoparticle for enhanced antibacterial activity. Materials Science and Engineering C, 2018, 92, 52-60.                                                                   | 3.8 | 46        |
| 57 | Supramolecular Cyclodextrin Supplements to Improve the Tissue Adhesion Strength of Gelatin<br>Bioglues. ACS Macro Letters, 2017, 6, 83-88.                                                                                                   | 2.3 | 32        |
| 58 | Synthesis and characterization of in situ gellable poly(glycerol sebacate)-co-poly(ethylene glycol)<br>polymers. Macromolecular Research, 2017, 25, 85-91.                                                                                   | 1.0 | 15        |
| 59 | In Situ Forming and H <sub>2</sub> O <sub>2</sub> -Releasing Hydrogels for Treatment of<br>Drug-Resistant Bacterial Infections. ACS Applied Materials & Interfaces, 2017, 9, 16890-16899.                                                    | 4.0 | 73        |
| 60 | Tyrosinase-Mediated Surface Coimmobilization of Heparin and Silver Nanoparticles for<br>Antithrombotic and Antimicrobial Activities. ACS Applied Materials & Interfaces, 2017, 9,<br>20376-20384.                                            | 4.0 | 21        |
| 61 | Optimized biodegradable polymeric reservoir-mediated local and sustained co-delivery of dendritic cells and oncolytic adenovirus co-expressing IL-12 and GM-CSF for cancer immunotherapy. Journal of Controlled Release, 2017, 259, 115-127. | 4.8 | 68        |
| 62 | In situ forming gelatin hydrogels by dual-enzymatic cross-linking for enhanced tissue adhesiveness.<br>Journal of Materials Chemistry B, 2017, 5, 757-764.                                                                                   | 2.9 | 68        |
| 63 | Engineered extracellular microenvironment with a tunable mechanical property for controlling cell behavior and cardiomyogenic fate of cardiac stem cells. Acta Biomaterialia, 2017, 50, 234-248.                                             | 4.1 | 26        |
| 64 | Heparin-functionalized polymer graft surface eluting MK2 inhibitory peptide to improve<br>hemocompatibility and anti-neointimal activity. Journal of Controlled Release, 2017, 266, 321-330.                                                 | 4.8 | 12        |
| 65 | A hydrogel matrix prolongs persistence and promotes specific localization of an oncolytic<br>adenovirus in a tumor by restricting nonspecific shedding and an antiviral immune response.<br>Biomaterials, 2017, 147, 26-38.                  | 5.7 | 43        |
| 66 | Oxidized cyclodextrin-functionalized injectable gelatin hydrogels as a new platform for<br>tissue-adhesive hydrophobic drug delivery. RSC Advances, 2017, 7, 34053-34062.                                                                    | 1.7 | 39        |
| 67 | Zwitterionic sulfobetaine polymer-immobilized surface by simple tyrosinase-mediated grafting for enhanced antifouling property. Acta Biomaterialia, 2017, 61, 169-179.                                                                       | 4.1 | 43        |
| 68 | <i>In situ</i> forming gelatin/graphene oxide hydrogels for facilitated C2C12 myoblast differentiation.<br>Applied Spectroscopy Reviews, 2016, 51, 527-539.                                                                                  | 3.4 | 31        |
| 69 | Cell recruiting chemokine-loaded sprayable gelatin hydrogel dressings for diabetic wound healing.<br>Acta Biomaterialia, 2016, 38, 59-68.                                                                                                    | 4.1 | 142       |
| 70 | Dual Enzyme-Triggered In Situ Crosslinkable Gelatin Hydrogels for Artificial Cellular<br>Microenvironments. Macromolecular Bioscience, 2016, 16, 1570-1576.                                                                                  | 2.1 | 23        |
| 71 | Multiphoton imaging of myogenic differentiation in gelatin-based hydrogels as tissue engineering scaffolds. Biomaterials Research, 2016, 20, 2.                                                                                              | 3.2 | 20        |
| 72 | Enhanced Cellular Activity in Gelatinâ€₽oly(Ethylene Glycol) Hydrogels without Compromising Gel<br>Stiffness. Macromolecular Bioscience, 2016, 16, 334-340.                                                                                  | 2.1 | 27        |

| #  | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Hierarchical self-assembly of magnetic nanoclusters for theranostics: Tunable size, enhanced<br>magnetic resonance imagability, and controlled and targeted drug delivery. Acta Biomaterialia, 2016,<br>35, 109-117.                                             | 4.1 | 52        |
| 74 | Heparin nanogel-containing liposomes for intracellular RNase delivery. Macromolecular Research,<br>2015, 23, 765-769.                                                                                                                                            | 1.0 | 26        |
| 75 | Injectable and mechanically robust 4-arm PPO–PEO/graphene oxide composite hydrogels for biomedical applications. Chemical Communications, 2015, 51, 8876-8879.                                                                                                   | 2.2 | 31        |
| 76 | Enzyme-mediated fabrication of an oxidized chitosan hydrogel as a tissue sealant. Journal of Bioactive and Compatible Polymers, 2015, 30, 412-423.                                                                                                               | 0.8 | 34        |
| 77 | Targeted doxorubicin nanotherapy strongly suppressing growth of multidrug resistant tumor in mice. International Journal of Pharmaceutics, 2015, 495, 329-335.                                                                                                   | 2.6 | 42        |
| 78 | Horseradish peroxidase-catalysed <i>in situ</i> -forming hydrogels for tissue-engineering applications.<br>Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 1225-1232.                                                                          | 1.3 | 102       |
| 79 | In Situ Crosslinkable Gelatin Hydrogels for Vasculogenic Induction and Delivery of Mesenchymal<br>Stem Cells. Advanced Functional Materials, 2014, 24, 6771-6781.                                                                                                | 7.8 | 69        |
| 80 | Enzyme-catalyzed in situ forming gelatin hydrogels as bioactive wound dressings: effects of<br>fibroblast delivery on wound healing efficacy. Journal of Materials Chemistry B, 2014, 2, 7712-7718.                                                              | 2.9 | 68        |
| 81 | In situ formation of enzyme-free hydrogels via ferromagnetic microbead-assisted enzymatic cross-linking. Chemical Communications, 2014, 50, 13710-13713.                                                                                                         | 2.2 | 16        |
| 82 | Macro/Nano-Gel Composite as an Injectable and Bioactive Bulking Material for the Treatment of Urinary Incontinence. Biomacromolecules, 2014, 15, 1979-1984.                                                                                                      | 2.6 | 25        |
| 83 | In situ forming gelatin-based tissue adhesives and their phenolic content-driven properties. Journal of<br>Materials Chemistry B, 2013, 1, 2407.                                                                                                                 | 2.9 | 108       |
| 84 | Therapeutic angiogenesis by a myoblast layer harvested by tissue transfer printing from cell-adhesive, thermosensitive hydrogels. Biomaterials, 2013, 34, 8258-8268.                                                                                             | 5.7 | 19        |
| 85 | Facile surface PEGylation via tyrosinase-catalyzed oxidative reaction for the preparation of non-fouling surfaces. Colloids and Surfaces B: Biointerfaces, 2013, 102, 585-589.                                                                                   | 2.5 | 11        |
| 86 | Bioreducible cross-linked Pluronic micelles: pH-triggered release of doxorubicin and folate-mediated cellular uptake. Journal of Bioactive and Compatible Polymers, 2013, 28, 341-354.                                                                           | 0.8 | 45        |
| 87 | Rapidly curable chitosan–PEC hydrogels as tissue adhesives for hemostasis and wound healing. Acta<br>Biomaterialia, 2012, 8, 3261-3269.                                                                                                                          | 4.1 | 309       |
| 88 | Electrospun microfibrous PLGA meshes coated with in situ cross-linkable gelatin hydrogels for tissue regeneration. Current Applied Physics, 2012, 12, S144-S149.                                                                                                 | 1.1 | 8         |
| 89 | Synthesis and Characterizations of In Situ Cross-Linkable Gelatin and 4-Arm-PPO-PEO Hybrid Hydrogels via Enzymatic Reaction for Tissue Regenerative Medicine. Biomacromolecules, 2012, 13, 604-611.                                                              | 2.6 | 81        |
| 90 | <i>In Situ</i> SVVYGLR Peptide Conjugation into Injectable Gelatin-Poly(ethylene glycol)-Tyramine<br>Hydrogel via Enzyme-Mediated Reaction for Enhancement of Endothelial Cell Activity and<br>Neo-Vascularization. Bioconjugate Chemistry, 2012, 23, 2042-2050. | 1.8 | 55        |

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Transfer Printing of Cell Layers with an Anisotropic Extracellular Matrix Assembly using<br>Cellâ€Interactive and Thermosensitive Hydrogels. Advanced Functional Materials, 2012, 22, 4060-4069. | 7.8 | 33        |
| 92 | Facile surface immobilization of cell adhesive peptide onto TiO2 substrate via tyrosinase-catalyzed oxidative reaction. Journal of Materials Chemistry, 2011, 21, 15906.                         | 6.7 | 29        |
| 93 | In situ cross-linkable gelatin–poly(ethylene glycol)–tyramine hydrogel via enzyme-mediated reaction<br>for tissue regenerative medicine. Journal of Materials Chemistry, 2011, 21, 13180.        | 6.7 | 107       |
| 94 | In situ hydrogelation and RGDconjugation of tyramine-conjugated 4-arm PPO–PEOblock copolymer<br>for injectable bio-mimetic scaffolds. Soft Matter, 2011, 7, 986-992.                             | 1.2 | 53        |
| 95 | Targeting ligand-functionalized and redox-sensitive heparin-Pluronic nanogels for intracellular<br>protein delivery. Biomedical Materials (Bristol), 2011, 6, 055004.                            | 1.7 | 40        |
| 96 | In Situ Forming and Rutin-Releasing Chitosan Hydrogels As Injectable Dressings for Dermal Wound<br>Healing. Biomacromolecules, 2011, 12, 2872-2880.                                              | 2.6 | 233       |
| 97 | Preparation of thermosensitive gelatin-pluronic copolymer for cartilage tissue engineering.<br>Macromolecular Research, 2010, 18, 387-391.                                                       | 1.0 | 32        |
| 98 | In Situ Forming Hydrogels Based on Tyramine Conjugated 4-Arm-PPO-PEO via Enzymatic Oxidative<br>Reaction. Biomacromolecules, 2010, 11, 706-712.                                                  | 2.6 | 151       |