E Michael Danielsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/347071/publications.pdf

Version: 2024-02-01

42 papers 1,526 citations

393982 19 h-index 301761 39 g-index

42 all docs 42 docs citations

42 times ranked 1831 citing authors

#	Article	IF	CITATIONS
1	Intestinal permeation enhancers: Lessons learned from studies using an organ culture model. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183474.	1.4	11
2	Short-term tissue permeability actions of dextran sulfate sodium studied in a colon organ culture system. Tissue Barriers, 2020, 8, 1728165.	1.6	5
3	Probing paracellular -versus transcellular tissue barrier permeability using a gut mucosal explant culture system. Tissue Barriers, 2019, 7, 1601955.	1.6	8
4	Probing the Action of Permeation Enhancers Sodium Cholate and N-dodecyl-Î ² -D-maltoside in a Porcine Jejunal Mucosal Explant System. Pharmaceutics, 2018, 10, 172.	2.0	12
5	Impact of cell-penetrating peptides (CPPs) melittin and Hiv-1 Tat on the enterocyte brush border using a mucosal explant system. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1589-1599.	1.4	15
6	Glycol chitosan: A stabilizer of lipid rafts in the intestinal brush border. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 360-367.	1.4	13
7	Intestinal surfactant permeation enhancers and their interaction with enterocyte cell membranes in a mucosal explant system. Tissue Barriers, 2017, 5, e1361900.	1.6	18
8	IgG trafficking in the adult pig small intestine: one- or bidirectional transfer across the enterocyte brush border?. Histochemistry and Cell Biology, 2017, 147, 399-411.	0.8	2
9	Small molecule pinocytosis and clathrin-dependent endocytosis at the intestinal brush border: Two separate pathways into the enterocyte. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 233-243.	1.4	25
10	Pasteurella multocida toxin: Targeting mast cell secretory granules during kiss-and-run secretion. Tissue and Cell, 2016, 48, 1-9.	1.0	4
11	Organ Culture as a Model System for Studies on Enterotoxin Interactions with the Intestinal Epithelium. Methods in Molecular Biology, 2016, 1396, 159-166.	0.4	10
12	The Subcellular Localization of GABA Transporters and Its Implication for Seizure Management. Neurochemical Research, 2015, 40, 410-419.	1.6	9
13	Probing endocytosis from the enterocyte brush border using fluorescent lipophilic dyes: lipid sorting at the apical cell surface. Histochemistry and Cell Biology, 2015, 143, 545-556.	0.8	10
14	Okadaic acid: A rapid inducer of lamellar bodies in small intestinal enterocytes. Toxicon, 2014, 88, 77-87.	0.8	8
15	Staphylococcus aureus enterotoxins Aâ ⁻ and B: binding to the enterocyte brush border and uptake by perturbation of the apical endocytic membrane traffic. Histochemistry and Cell Biology, 2013, 139, 513-524.	0.8	20
16	Generation of Stable Lipid Raft Microdomains in the Enterocyte Brush Border by Selective Endocytic Removal of Non-Raft Membrane. PLoS ONE, 2013, 8, e76661.	1.1	10
17	Apolipoprotein A-1 (apoA-1) deposition in, and release from, the enterocyte brush border: A possible role in transintestinal cholesterol efflux (TICE)?. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 530-536.	1.4	12
18	Dietary free fatty acids form alkaline phosphatase-enriched microdomains in the intestinal brush border membrane. Molecular Membrane Biology, 2011, 28, 136-144.	2.0	12

#	Article	IF	CITATIONS
19	Dietary cholesterol induces trafficking of intestinal Niemann-Pick Type C1 Like 1 from the brush border to endosomes. American Journal of Physiology - Renal Physiology, 2011, 300, G33-G40.	1.6	13
20	Lactoferrin targets T cells in the small intestine. Journal of Gastroenterology, 2010, 45, 1121-1128.	2.3	18
21	Domains of increased thickness in microvillar membranes of the small intestinal enterocyte. Molecular Membrane Biology, 2010, 27, 170-177.	2.0	11
22	Toxin-Mediated Effects on the Innate Mucosal Defenses: Implications for Enteric Vaccines. Infection and Immunity, 2009, 77, 5206-5215.	1.0	41
23	Lipopolysaccharide-binding protein: localization in secretory granules of Paneth cells in the mouse small intestine. Histochemistry and Cell Biology, 2009, 131, 727-732.	0.8	21
24	Galectin-2 at the enterocyte brush border of the small intestine. Molecular Membrane Biology, 2009, 26, 347-355.	2.0	19
25	Endocytic trafficking from the small intestinal brush border probed with FM dye. American Journal of Physiology - Renal Physiology, 2009, 297, G708-G715.	1.6	45
26	Intestinal alkaline phosphatase: selective endocytosis from the enterocyte brush border during fat absorption. American Journal of Physiology - Renal Physiology, 2007, 293, G1325-G1332.	1.6	39
27	Intelectin:  A Novel Lipid Raft-Associated Protein in the Enterocyte Brush Border. Biochemistry, 2006, 45, 9188-9197.	1.2	100
28	Antibodies in the small intestine: mucosal synthesis and deposition of anti-glycosyl IgA, IgM, and IgG in the enterocyte brush border. American Journal of Physiology - Renal Physiology, 2006, 291, G82-G90.	1.6	14
29	Lipid raft organization and function in brush borders of epithelial cells (Review). Molecular Membrane Biology, 2006, 23, 71-79.	2.0	101
30	Anti-glycosyl antibodies in lipid rafts of the enterocyte brush border: a possible host defense against pathogens. American Journal of Physiology - Renal Physiology, 2005, 289, G1100-G1107.	1.6	18
31	Cholera Toxin Entry into Pig Enterocytes Occurs via a Lipid Raft- and Clathrin-Dependent Mechanismâ€. Biochemistry, 2005, 44, 873-882.	1.2	78
32	Lipid raft localization of GABAA receptor and Na+, K+-ATPase in discrete microdomain clusters in rat cerebellar granule cells. Neurochemistry International, 2005, 46, 489-499.	1.9	64
33	"Nonclassical―Secretion of Annexin A2 to the Lumenal Side of the Enterocyte Brush Border Membraneâ€. Biochemistry, 2003, 42, 14670-14676.	1.2	54
34	Lipid rafts in epithelial brush borders: atypical membrane microdomains with specialized functions. Biochimica Et Biophysica Acta - Biomembranes, 2003, 1617, 1-9.	1.4	105
35	Microvillar Membrane Microdomains Exist at Physiological Temperature. Journal of Biological Chemistry, 2003, 278, 15679-15684.	1.6	134
36	Deep-apical tubules: dynamic lipid-raft microdomains in the brush-border region of enterocytes. Biochemical Journal, 2003, 373, 125-132.	1.7	55

#	Article	IF	CITATIONS
37	Caveolae/lipid rafts in fibroblast-like synoviocytes: ectopeptidase-rich membrane microdomains. Biochemical Journal, 2001, 354, 47-55.	1.7	56
38	Galectin-4 and Small Intestinal Brush Border Enzymes Form Clusters. Molecular Biology of the Cell, 1997, 8, 2241-2251.	0.9	95
39	Involvement of Detergent-Insoluble Complexes in the Intracellular Transport of Intestinal Brush Border Enzymes. Biochemistry, 1995, 34, 1596-1605.	1.2	139
40	Dimeric Assembly of Enterocyte Brush Border Enzymes. Biochemistry, 1994, 33, 1599-1605.	1.2	43
41	Biosynthesis of intestinal microvillar proteins. Evidence for an intracellular sorting taking place in, or shortly after, exit from the Golgi complex. FEBS Journal, 1985, 152, 493-499.	0.2	42
42	Structure of Microvillar Enzymes in Different Phases of Their Life Cycles. Novartis Foundation Symposium, 1983, 95, 50-72.	1.2	17